Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Chemosphere ; : 142618, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880260

RESUMEN

Urban wastewater treatment plants (WWTP) represent key point-source discharges of microplastics (MP) into the environment, however, little is known about the microbial carrying capacity of plastics travelling through them. The purpose of this study was to quantify the number of cells that become associated with MP at different locations within a WWTP, and to assess differences in microbiome communities. We conducted a field experiment incubating low density polyethylene (LDPE) MP beads in WWTP influent and effluent, as well as tracking free floating beads during passage in wastewater from a large municipal hospital to an urban WWTP, where they were subsequently recovered. Using two cell counting methods - automated flow cytometric true absolute cell counts and indirect cell quantification via protein content based on a model E. coli cell - we quantified cell attachment to LDPE beads. LDPE associated counts ranged from 350 x 103 cells cm-2 after incubation in wastewater effluent, and 990 x 103 cells cm-2 after incubation in wastewater influent. 16S rRNA gene amplicon sequencing was used to determine the bacterial community structure of the plastic-associated microbiomes. Our results showed that distinct bacterial communities developed on the LDPE MP following exposure to each wastewater type. Influent (untreated) wastewater LDPE-associated microbiomes were dominated by Bacillota whereas the microbes that attached in wastewater effluent (tertiary treated) were dominated by Pseudomonadota. In conclusion, this study provides clear evidence that microplastics migrating through the sewer network and WWTP rapidly accumulate microbiomes with unique microbial community structures varying from sewage influent to effluent. These findings demonstrate the differential microbiological risk from MP associated with routine wastewater discharges to those released from intermittent combined sewer overflows (CSOs) during storm events.

2.
Environ Microbiome ; 19(1): 27, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685074

RESUMEN

BACKGROUND: Plastics pollution and antimicrobial resistance (AMR) are two major environmental threats, but potential connections between plastic associated biofilms, the 'plastisphere', and dissemination of AMR genes are not well explored. RESULTS: We conducted mesocosm experiments tracking microbial community changes on plastic surfaces transitioning from wastewater effluent to marine environments over 16 weeks. Commonly used plastics, polypropylene (PP), high density polyethylene (HDPE), low density polyethylene (LDPE) and polyethylene terephthalate (PET) incubated in wastewater effluent, river water, estuarine water, and in the seawater for 16 weeks, were analysed via 16S rRNA gene amplicon and shotgun metagenome sequencing. Within one week, plastic-colonizing communities shifted from wastewater effluent-associated microorganisms to marine taxa, some members of which (e.g. Oleibacter-Thalassolituus and Sphingomonas spp., on PET, Alcanivoracaceae on PET and PP, or Oleiphilaceae, on all polymers), were selectively enriched from levels undetectable in the starting communities. Remarkably, microbial biofilms were also susceptible to parasitism, with Saprospiraceae feeding on biofilms at late colonisation stages (from week 6 onwards), while Bdellovibrionaceae were prominently present on HDPE from week 2 and LDPE from day 1. Relative AMR gene abundance declined over time, and plastics did not become enriched for key AMR genes after wastewater exposure. CONCLUSION: Although some resistance genes occurred during the mesocosm transition on plastic substrata, those originated from the seawater organisms. Overall, plastic surfaces incubated in wastewater did not act as hotspots for AMR proliferation in simulated marine environments.

3.
Environ Microbiome ; 18(1): 61, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464403

RESUMEN

BACKGROUND: Archaea of the order Thermoplasmatales are widely distributed in natural acidic areas and are amongst the most acidophilic prokaryotic organisms known so far. These organisms are difficult to culture, with currently only six genera validly published since the discovery of Thermoplasma acidophilum in 1970. Moreover, known great diversity of uncultured Thermoplasmatales represents microbial dark matter and underlines the necessity of efforts in cultivation and study of these archaea. Organisms from the order Thermoplasmatales affiliated with the so-called "alphabet-plasmas", and collectively dubbed "E-plasma", were the focus of this study. These archaea were found predominantly in the hyperacidic site PM4 of Parys Mountain, Wales, UK, making up to 58% of total metagenomic reads. However, these archaea escaped all cultivation attempts. RESULTS: Their genome-based metabolism revealed its peptidolytic potential, in line with the physiology of the previously studied Thermoplasmatales isolates. Analyses of the genome and evolutionary history reconstruction have shown both the gain and loss of genes, that may have contributed to the success of the "E-plasma" in hyperacidic environment compared to their community neighbours. Notable genes among them are involved in the following molecular processes: signal transduction, stress response and glyoxylate shunt, as well as multiple copies of genes associated with various cellular functions; from energy production and conversion, replication, recombination, and repair, to cell wall/membrane/envelope biogenesis and archaella production. History events reconstruction shows that these genes, acquired by putative common ancestors, may determine the evolutionary and functional divergences of "E-plasma", which is much more developed than other representatives of the order Thermoplasmatales. In addition, the ancestral hereditary reconstruction strongly indicates the placement of Thermogymnomonas acidicola close to the root of the Thermoplasmatales. CONCLUSIONS: This study has analysed the metagenome-assembled genome of "E-plasma", which denotes the basis of their predominance in Parys Mountain environmental microbiome, their global ubiquity, and points into the right direction of further cultivation attempts. The results suggest distinct evolutionary trajectories of organisms comprising the order Thermoplasmatales, which is important for the understanding of their evolution and lifestyle.

4.
J Hazard Mater ; 458: 131932, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37390687

RESUMEN

Over the last 50 years, the intense use of agricultural plastic in the form of mulch films has led to an accumulation of plastic in soil, creating a legacy of plastic in agricultural fields. Plastic often contains additives, however it is still largely unknown how these compounds affect soil properties, potentially influencing or masking effects of the plastic itself. Therefore, the aim of this study was to investigate the effects of pure plastics of varying sizes and concentrations, to improve our understanding of plastic-only interactions within soil-plant mesocosms. Maize (Zea mays L.) was grown over eight weeks following the addition of micro and macro low-density polyethylene and polypropylene at increasing concentrations (equivalent to 1, 10, 25, and 50 years mulch film use) and the effects of plastic on key soil and plant properties were measured. We found the effect of both macro and microplastic on soil and plant health is negligible in the short-term (1 to <10 years). However, ≥ 10 years of plastic application for both plastic types and sizes resulted in a clear negative effect on plant growth and microbial biomass. This study provides vital insight into the effect of both macro and microplastics on soil and plant properties.


Asunto(s)
Plásticos , Polietileno , Biomasa , Agricultura , Suelo , Microplásticos , Zea mays , Plantas
5.
Essays Biochem ; 67(4): 715-729, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37334661

RESUMEN

The steady growth in industrial production of synthetic plastics and their limited recycling have resulted in severe environmental pollution and contribute to global warming and oil depletion. Currently, there is an urgent need to develop efficient plastic recycling technologies to prevent further environmental pollution and recover chemical feedstocks for polymer re-synthesis and upcycling in a circular economy. Enzymatic depolymerization of synthetic polyesters by microbial carboxylesterases provides an attractive addition to existing mechanical and chemical recycling technologies due to enzyme specificity, low energy consumption, and mild reaction conditions. Carboxylesterases constitute a diverse group of serine-dependent hydrolases catalysing the cleavage and formation of ester bonds. However, the stability and hydrolytic activity of identified natural esterases towards synthetic polyesters are usually insufficient for applications in industrial polyester recycling. This necessitates further efforts on the discovery of robust enzymes, as well as protein engineering of natural enzymes for enhanced activity and stability. In this essay, we discuss the current knowledge of microbial carboxylesterases that degrade polyesters (polyesterases) with focus on polyethylene terephthalate (PET), which is one of the five major synthetic polymers. Then, we briefly review the recent progress in the discovery and protein engineering of microbial polyesterases, as well as developing enzyme cocktails and secreted protein expression for applications in the depolymerisation of polyester blends and mixed plastics. Future research aimed at the discovery of novel polyesterases from extreme environments and protein engineering for improved performance will aid developing efficient polyester recycling technologies for the circular plastics economy.


Asunto(s)
Extremófilos , Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Plásticos/química , Plásticos/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/metabolismo , Extremófilos/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo
6.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317055

RESUMEN

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Asunto(s)
Haloferax , Xilanos , Ecosistema
7.
Nat Commun ; 14(1): 1045, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828822

RESUMEN

Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases. Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility confirms the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response.


Asunto(s)
Microbiota , Bacterias , Agua de Mar/microbiología , Temperatura , Adaptación Fisiológica , Esterasas/química
8.
Appl Environ Microbiol ; 89(1): e0180722, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602332

RESUMEN

Metagenomics offers the possibility to screen for versatile biocatalysts. In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH0, retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates. EH0 (optimum temperature [Topt], 50°C; melting temperature [Tm], 55.7°C; optimum pH [pHopt], 9.5) was stable in the presence of 10 to 20% (vol/vol) organic solvents and exhibited hydrolytic activity against p-nitrophenyl esters from acetate to palmitate, preferably butyrate (496 U mg-1), and a large battery of 69 structurally different esters (up to 30.2 U mg-1), including bis(2-hydroxyethyl)-terephthalate (0.16 ± 0.06 U mg-1). This broad substrate specificity contrasts with the fact that EH0 showed a long and narrow catalytic tunnel, whose access appears to be hindered by a tight folding of its cap domain. We propose that this cap domain is a highly flexible structure whose opening is mediated by unique structural elements, one of which is the presence of two contiguous proline residues likely acting as possible hinges, which together allow for the entrance of the substrates. Therefore, this work provides a new role for the cap domain, which until now was thought to be an immobile element that contained hydrophobic patches involved in substrate prerecognition and in turn substrate specificity within family IV esterases. IMPORTANCE A better understanding of structure-function relationships of enzymes allows revelation of key structural motifs or elements. Here, we studied the structural basis of the substrate promiscuity of EH0, a family IV esterase, isolated from a sample of the Sorghum bicolor rhizosphere microbiome exposed to technical cashew nut shell liquid. The analysis of EH0 revealed the potential of the sorghum rhizosphere microbiome as a source of enzymes with interesting properties, such as pH and solvent tolerance and remarkably broad substrate promiscuity. Its structure resembled those of homologous proteins from mesophilic Parvibaculum and Erythrobacter spp. and hyperthermophilic Pyrobaculum and Sulfolobus spp. and had a very narrow, single-entry access tunnel to the active site, with access controlled by a capping domain that includes a number of nonconserved proline residues. These structural markers, distinct from those of other substrate-promiscuous esterases, can help in tuning substrate profiles beyond tunnel and active site engineering.


Asunto(s)
Microbiota , Sorghum , Esterasas/metabolismo , Sorghum/metabolismo , Rizosfera , Ésteres/metabolismo , Especificidad por Sustrato , Concentración de Iones de Hidrógeno
9.
Appl Environ Microbiol ; 89(2): e0170422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719236

RESUMEN

Hydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of Firmicutes, Proteobacteria, and Bacteroidota. High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of Thermus and Geobacillus species and to some extent Fontimonas and Schleiferia species. The screening at 37 to 70°C of metagenomic fosmid libraries from above enrichment cultures identified three hydrolases (IS10, IS11, and IS12), all derived from yet-uncultured Chloroflexota and showing low sequence identity (33 to 56%) to characterized enzymes. Enzymes expressed in Escherichia coli exhibited maximal esterase activity at 70 to 90°C, with IS11 showing the highest thermostability (90% activity after 20-min incubation at 80°C). IS10 and IS12 were highly substrate promiscuous and hydrolyzed all 51 monoester substrates tested. Enzymes were active with PLA, polyethylene terephthalate model substrate, and mycotoxin T-2 (IS12). IS10 and IS12 had a classical α/ß-hydrolase core domain with a serine hydrolase catalytic triad (Ser155, His280, and Asp250) in their hydrophobic active sites. The crystal structure of IS11 resolved at 2.92 Å revealed the presence of a N-terminal ß-lactamase-like domain and C-terminal lipocalin domain. The catalytic cleft of IS11 included catalytic Ser68, Lys71, Tyr160, and Asn162, whereas the lipocalin domain enclosed the catalytic cleft like a lid and contributed to substrate binding. Our study identified novel thermotolerant carboxylesterases with a broad substrate range, including polyesters and mycotoxins, for potential applications in biotechnology. IMPORTANCE High-temperature-active microbial enzymes are important biocatalysts for many industrial applications, including recycling of synthetic and biobased polyesters increasingly used in textiles, fibers, coatings and adhesives. Here, we identified three novel thermotolerant carboxylesterases (IS10, IS11, and IS12) from high-temperature enrichment cultures from Ischia hydrothermal vents and incubated with biobased polymers. The identified metagenomic enzymes originated from uncultured Chloroflexota and showed low sequence similarity to known carboxylesterases. Active sites of IS10 and IS12 had the largest effective volumes among the characterized prokaryotic carboxylesterases and exhibited high substrate promiscuity, including hydrolysis of polyesters and mycotoxin T-2 (IS12). Though less promiscuous than IS10 and IS12, IS11 had a higher thermostability with a high temperature optimum (80 to 90°C) for activity and hydrolyzed polyesters, and its crystal structure revealed an unusual lipocalin domain likely involved in substrate binding. The polyesterase activity of these enzymes makes them attractive candidates for further optimization and potential application in plastics recycling.


Asunto(s)
Hidrolasas de Éster Carboxílico , Respiraderos Hidrotermales , Hidrolasas de Éster Carboxílico/metabolismo , Polímeros , Hidrolasas/metabolismo , Poliésteres , Plásticos , Especificidad por Sustrato
10.
Environ Pollut ; 317: 120772, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455775

RESUMEN

Petroleum hydrocarbons and heavy metals are some of the most widespread contaminants affecting marine ecosystems, urgently needing effective and sustainable remediation solutions. Microbial-based bioremediation is gaining increasing interest as an effective, economically and environmentally sustainable strategy. Here, we hypothesized that the heavily polluted coastal area facing the Sarno River mouth, which discharges >3 tons of polycyclic aromatic hydrocarbons (PAHs) and ∼15 tons of heavy metals (HMs) into the sea annually, hosts unique microbiomes including marine bacteria useful for PAHs and HMs bioremediation. We thus enriched the microbiome of marine sediments, contextually selecting for HM-resistant bacteria. The enriched mixed bacterial culture was subjected to whole-DNA sequencing, metagenome-assembled-genomes (MAGs) annotation, and further sub-culturing to obtain the major bacterial species as pure strains. We obtained two novel isolates corresponding to the two most abundant MAGs (Alcanivorax xenomutans strain-SRM1 and Halomonas alkaliantarctica strain-SRM2), and tested their ability to degrade PAHs and remove HMs. Both strains exhibited high PAHs degradation (60-100%) and HMs removal (21-100%) yield, and we described in detail >60 genes in their MAGs to unveil the possible genetic basis for such abilities. Most promising yields (∼100%) were obtained towards naphthalene, pyrene and lead. We propose these novel bacterial strains and related genetic repertoire to be further exploited for effective bioremediation of marine environments contaminated with both PAHs and HMs.


Asunto(s)
Metales Pesados , Microbiota , Petróleo , Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Petróleo/análisis , Bacterias/genética , Bacterias/metabolismo , Metales Pesados/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos/metabolismo , Sedimentos Geológicos/microbiología
11.
Methods Mol Biol ; 2555: 181-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36306087

RESUMEN

The discovery of new enzymes is strongly enabled by the implementation of high-throughput screening methods to detect enzymatic activity in single organisms or clone expression libraries, or to benchmark their performances against known prototypes. In this chapter, a number of methods, applicable at high-throughput scale, are described that allow the screening and characterization of enzymes relevant to biotechnology, particularly, ester-hydrolases (esterases, lipases, phospholipases, and polyester hydrolases).


Asunto(s)
Esterasas , Lipasa , Esterasas/metabolismo , Lipasa/metabolismo , Fosfolipasas , Ensayos Analíticos de Alto Rendimiento/métodos
12.
Microorganisms ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36144296

RESUMEN

The Parys Mountain copper mine (Wales, UK) contains a wide range of discrete environmental microniches with various physicochemical conditions that shape microbial community composition. Our aim was to assess the microbial community in the sediments and overlying water column in an acidic mine drainage (AMD) site containing abundant filamentous biogenic growth via application of a combination of chemical analysis and taxonomic profiling using 16S rRNA gene amplicon sequencing. Our results were then compared to previously studied sites at Parys Mt. Overall, the sediment microbiome showed a dominance of bacteria over archaea, particularly those belonging to Proteobacteria (genera Acidiphilium and Acidisphaera), Acidobacteriota (subgroup 1), Chloroflexota (AD3 cluster), Nitrospirota (Leptospirillum) and the uncultured Planctomycetota/CPIa-3 termite group. Archaea were only present in the sediment in small quantities, being represented by the Terrestrial Miscellaneous Euryarchaeota Group (TMEG), Thermoplasmatales and Ca. Micrarchaeota (Ca. Micracaldota). Bacteria, mostly of the genera Acidiphilium and Leptospirillum, also dominated within the filamentous streamers while archaea were largely absent. This study found pH and dissolved solutes to be the most important parameters correlating with relative proportions of bacteria to archaea in an AMD environment and revealed the abundance patterns of native acidophilic prokaryotes inhabiting Parys Mt sites and their niche specificities.

13.
J Hazard Mater ; 436: 129278, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739790

RESUMEN

Polyethylene (PE) is one of the most recalcitrant carbon-based synthetic materials produced and, currently, the most ubiquitous plastic pollutant found in nature. Over time, combined abiotic and biotic processes are thought to eventually breakdown PE. Despite limited evidence of biological PE degradation and speculation that hydrocarbon-degrading bacteria found within the plastisphere is an indication of biodegradation, there is no clear mechanistic understanding of the process. Here, using high-throughput proteomics, we investigated the molecular processes that take place in the hydrocarbon-degrading marine bacterium Alcanivorax sp. 24 when grown in the presence of low density PE (LDPE). As well as efficiently utilising and assimilating the leachate of weathered LDPE, the bacterium was able to reduce the molecular weight distribution (Mw from 122 to 83 kg/mol) and overall mass of pristine LDPE films (0.9 % after 34 days of incubation). Most interestingly, Alcanivorax acquired the isotopic signature of the pristine plastic and induced an extensive array of metabolic pathways for aliphatic compound degradation. Presumably, the primary biodegradation of LDPE by Alcanivorax sp. 24 is possible via the production of extracellular reactive oxygen species as observed both by the material's surface oxidation and the measurement of superoxide in the culture with LDPE. Our findings confirm that hydrocarbon-biodegrading bacteria within the plastisphere may in fact have a role in degrading PE.


Asunto(s)
Alcanivoraceae , Alcanivoraceae/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo
14.
Environ Sci Pollut Res Int ; 29(40): 60945-60952, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35437658

RESUMEN

Irrigation of fresh produce with poorly treated wastewater or contaminated freshwater sources can lead to produce contamination and foodborne illnesses, as well as the dissemination of antimicrobial resistance determinants. In this study, we assessed the presence of integrons in multidrug-resistant Escherichia coli isolated from the University of Nigeria, Nsukka Wastewater Treatment Plant effluent, tap water, vegetables from irrigated gardens and vegetables sold in selected markets from Nsukka and Enugu cities. E. coli was isolated following standard laboratory procedure and confirmed through beta-glucuronidase (uidA)-targeted polymerase chain reaction (PCR). The antibiotic resistance of the isolates was determined using Bauer-Kirby disk diffusion assay, and multiplex PCR was used to determine the presence of class 1 and 2 integrons. Our result revealed a total of 188 E. coli isolates from WWTP effluent (n = 41), tap water (n = 10) and vegetables from greenhouse (n = 46), farms (n = 55) and market (n = 36). Multidrug resistance was detected in all the isolates, ranging from three-drug resistance in a single isolate to 7-drug resistance patterns in two different isolates. Of the total isolates, class 1 integrons were abundantly detected in 175 (93.1%) and class 2 in 5 (2.7%). All the class 2 integrons were found in isolates that were positive for class 1. The abundance of multidrug-resistant E. coli harbouring class 1 integrons in the effluent and vegetable samples is a potential public health risk. Therefore, the appropriate measures for the safe use of poorly treated wastewater for vegetable farm irrigation are required to be put in place to reduce the microbial load of the discharged effluent. Also, education of farmers and the community on the dangers of wastewater effluent-grown plants and proper methods for cleaning harvested vegetable is recommended.


Asunto(s)
Escherichia coli , Integrones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Nigeria , Prevalencia , Verduras , Aguas Residuales , Agua
15.
ISME J ; 16(6): 1534-1546, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35132120

RESUMEN

Anaerobic carboxydotrophy is a widespread catabolic trait in bacteria, with two dominant pathways: hydrogenogenic and acetogenic. The marginal mode by direct oxidation to CO2 using an external e-acceptor has only a few examples. Use of sulfidic sediments from two types of hypersaline lakes in anaerobic enrichments with CO as an e-donor and elemental sulfur as an e-acceptor led to isolation of two pure cultures of anaerobic carboxydotrophs belonging to two genera of sulfur-reducing haloarchaea: Halanaeroarchaeum sp. HSR-CO from salt lakes and Halalkaliarchaeum sp. AArc-CO from soda lakes. Anaerobic growth of extremely halophilic archaea with CO was obligatory depended on the presence of elemental sulfur as the electron acceptor and yeast extract as the carbon source. CO served as a direct electron donor and H2 was not generated from CO when cells were incubated with or without sulfur. The genomes of the isolates encode a catalytic Ni,Fe-CODH subunit CooS (distantly related to bacterial homologs) and its Ni-incorporating chaperone CooC (related to methanogenic homologs) within a single genomic locus. Similar loci were also present in a genome of the type species of Halalkaliarchaeum closely related to AArc-CO, and the ability for anaerobic sulfur-dependent carboxydotrophy was confirmed for three different strains of this genus. Moreover, similar proteins are encoded in three of the four genomes of recently described carbohydrate-utilizing sulfur-reducing haloarchaea belonging to the genus Halapricum and in two yet undescribed haloarchaeal species. Overall, this work demonstrated for the first time the potential for anaerobic sulfur-dependent carboxydotrophy in extremely halophilic archaea.


Asunto(s)
Euryarchaeota , Halobacteriales , Anaerobiosis , Euryarchaeota/genética , Lagos/microbiología , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Azufre/metabolismo
16.
Life (Basel) ; 12(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35054477

RESUMEN

Amylomaltases are prokaryotic 4-α-glucanotransferases of the GH77 family. Thanks to the ability to modify starch, they constitute a group of enzymes of great interest for biotechnological applications. In this work we report the identification, by means of a functional metagenomics screening of the crystallization waters of the saltern of Margherita di Savoia (Italy), of an amylomaltase gene from the halophilic archaeon Haloquadratum walsbyi, and its expression in Escherichia coli cells. Sequence analysis indicated that the gene has specific insertions yet unknown in homologous genes in prokaryotes, and present only in amylomaltase genes identified in the genomes of other H. walsbyi strains. The gene is not part of any operon involved in the metabolism of maltooligosaccharides or glycogen, as it has been found in bacteria, making it impossible currently to assign a precise role to the encoded enzyme. Sequence analysis of the H. walsbyi amylomaltase and 3D modelling showed a common structure with homologous enzymes characterized in mesophilic and thermophilic bacteria. The recombinant H. walsbyi enzyme showed starch transglycosylation activity over a wide range of NaCl concentrations, with maltotriose as the best acceptor substrate compared to other maltooligosaccharides. This is the first study of an amylomaltase from a halophilic microorganism.

17.
Curr Opin Biotechnol ; 73: 337-345, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34768202

RESUMEN

According to current estimates, the annual volume of crude oil entering the ocean due to both anthropogenic activities and naturally occurring seepages reaches approximately 8.3 million metric tons. Huge discharges from accidents have caused large-scale environmental disasters with extensive damage to the marine ecosystem. The natural clean-up of petroleum spills in marine environments is carried out primarily by naturally occurring obligate hydrocarbonoclastic bacteria (OHCB). The natural hosts of OHCB include a range of marine primary producers, unicellular photosynthetic eukaryotes and cyanobacteria, which have been documented as both, suppliers of hydrocarbon-like compounds that fuel the 'cryptic' hydrocarbon cycle and as a source of isolation of new OHCB. A very new body of evidence suggests that OHCB are not only the active early stage colonizers of plastics and hence the important component of the ocean's 'plastisphere' but also encode an array of enzymes experimentally proven to act on petrochemical and bio-based polymers.


Asunto(s)
Cianobacterias , Petróleo , Biodegradación Ambiental , Ecosistema , Petróleo/microbiología , Agua de Mar/química
18.
Comput Struct Biotechnol J ; 19: 2307-2317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995922

RESUMEN

Our understanding of enzymes with high substrate ambiguity remains limited because their large active sites allow substrate docking freedom to an extent that seems incompatible with stereospecificity. One possibility is that some of these enzymes evolved a set of evolutionarily fitted sequence positions that stringently allow switching substrate ambiguity and chiral specificity. To explore this hypothesis, we targeted for mutation a serine ester hydrolase (EH3) that exhibits an impressive 71-substrate repertoire but is not stereospecific (e.e. 50%). We used structural actions and the computational evolutionary trace method to explore specificity-swapping sequence positions and hypothesized that position I244 was critical. Driven by evolutionary action analysis, this position was substituted to leucine, which together with isoleucine appears to be the amino acid most commonly present in the closest homologous sequences (max. identity, ca. 67.1%), and to phenylalanine, which appears in distant homologues. While the I244L mutation did not have any functional consequences, the I244F mutation allowed the esterase to maintain a remarkable 53-substrate range while gaining stereospecificity properties (e.e. 99.99%). These data support the possibility that some enzymes evolve sequence positions that control the substrate scope and stereospecificity. Such residues, which can be evolutionarily screened, may serve as starting points for further designing substrate-ambiguous, yet chiral-specific, enzymes that are greatly appreciated in biotechnology and synthetic chemistry.

20.
FEMS Microbiol Ecol ; 97(2)2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33264383

RESUMEN

Filterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations. To identify changes in community structure, we used 16S rRNA amplicon and shotgun sequencing. Unlike the unfiltered water samples where the consumption of DOC was rapid, the filtered fraction showed a 3-day lag phase before the consumption started. Analysis of functional categories of clusters of orthologous groups of proteins (COGs) showed that COGs associated with energy production increased in number in both fractions with substrate addition. The filtered fraction utilized low-molecular-weight (LMW) DOC at much slower rates than the whole community. Addition of nanomolar concentrations of LMW DOC did not measurably influence the composition of the microbial community nor the rate of consumption across all substrate types in either fraction. We conclude that due to their low activity, filterable microorganisms play a minor role in LMW DOC processing within a short residence time of lotic freshwater systems.


Asunto(s)
Microbiota , Compuestos Orgánicos , Carbono , Agua Dulce , ARN Ribosómico 16S/genética , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...