Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 903, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666980

RESUMEN

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , División Celular , Ciclo Celular/genética , Desarrollo de la Planta
2.
Sci Rep ; 13(1): 1241, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690685

RESUMEN

Organisms have evolved a circadian clock for the precise timing of their biological processes. Studies primarily on model dicots have shown the complexity of the inner timekeeper responsible for maintaining circadian oscillation in plants and have highlighted that circadian regulation is more than relevant to a wide range of biological processes, especially organ development and timing of flowering. Contribution of the circadian clock to overall plant fitness and yield has also long been known. Nevertheless, the organ- and species-specific functions of the circadian clock and its relation to stress adaptation have only recently been identified. Here we report transcriptional changes of core clock genes of the model monocot Brachypodium distachyon under three different light regimes (18:6 light:dark, 24:0 light and 0:24 dark) in response to mild drought stress in roots and green plant parts. Comparative monitoring of core clock gene expression in roots and green plant parts has shown that both phase and amplitude of expression in the roots of Brachypodium plants differ markedly from those in the green plant parts, even under well-watered conditions. Moreover, circadian clock genes responded to water depletion differently in root and shoot. These results suggest an organ-specific form and functions of the circadian clock in Brachypodium roots.


Asunto(s)
Brachypodium , Relojes Circadianos , Relojes Circadianos/fisiología , Brachypodium/genética , Deshidratación , Regulación de la Expresión Génica de las Plantas , Especificidad de la Especie , Ritmo Circadiano/fisiología
3.
Nat Commun ; 13(1): 1660, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351906

RESUMEN

How cell size and number are determined during organ development remains a fundamental question in cell biology. Here, we identified a GRAS family transcription factor, called SCARECROW-LIKE28 (SCL28), with a critical role in determining cell size in Arabidopsis. SCL28 is part of a transcriptional regulatory network downstream of the central MYB3Rs that regulate G2 to M phase cell cycle transition. We show that SCL28 forms a dimer with the AP2-type transcription factor, AtSMOS1, which defines the specificity for promoter binding and directly activates transcription of a specific set of SIAMESE-RELATED (SMR) family genes, encoding plant-specific inhibitors of cyclin-dependent kinases and thus inhibiting cell cycle progression at G2 and promoting the onset of endoreplication. Through this dose-dependent regulation of SMR transcription, SCL28 quantitatively sets the balance between cell size and number without dramatically changing final organ size. We propose that this hierarchical transcriptional network constitutes a cell cycle regulatory mechanism that allows to adjust cell size and number to attain robust organ growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Tamaño de la Célula , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo
4.
Plant Cell Rep ; 36(1): 61-79, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27686461

RESUMEN

KEY MESSAGE: An unambiguous nomenclature is proposed for the twenty-eight-member LOB domain transcription factor family in Brachypodium . Expression analysis provides unique transcript patterns that are characteristic of a wide range of organs and plant parts. LOB (lateral organ boundaries)-domain proteins define a family of plant-specific transcription factors involved in developmental processes from embryogenesis to seed production. They play a crucial role in shaping the plant architecture through coordinating cell fate at meristem to organ boundaries. Despite their high potential importance, our knowledge of them is limited, especially in the case of monocots. In this study, we characterized LOB domain protein coding genes (LBDs) of Brachypodium distachyon, a model plant for grasses, and present their phylogenetic relationships and an overall spatial expression study. In the Brachypodium genome database, 28 LBDs were found and then classified based on the presence of highly conserved LOB domain motif. Their transcript amounts were measured via quantitative real-time RT-PCR in 37 different plant parts from root tip to generative organs. Comprehensive phylogenetic analysis suggests that there are neither Brachypodium- nor monocot-specific lineages among LBDs, but there are differences in terms of complexity of subclasses between monocots and dicots. Although LBDs in Brachypodium have wide variation of tissue-specific expression and relative transcript levels, overall expression patterns show similarity to their counterparts in other species. The varying transcript profiles we observed support the hypothesis that Brachypodium LBDs have diverse but conserved functions in plant organogenesis.


Asunto(s)
Brachypodium/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Transcripción Genética , Secuencia de Aminoácidos , Cromosomas de las Plantas/genética , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia
5.
Plant Physiol Biochem ; 52: 119-29, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22305075

RESUMEN

One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar.


Asunto(s)
Peroxidasa/metabolismo , Peroxidasas/metabolismo , Estrés Fisiológico/fisiología , Triticum/enzimología , Pared Celular , Sequías , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ósmosis , Peroxidasa/genética , Peroxidasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Polietilenglicoles/farmacología , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Tiempo , Triticum/genética , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...