Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 144: 258-267, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28633104

RESUMEN

Acetaminophen (paracetamol) (PAR) is one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) with analgesic and antipyretic properties consumed worldwide and often detected in the aquatic environment. Due to the fact that PAR induces oxidative stress in mammals, the aim of this study was to evaluate if similar effects were observed in oysters Crassostrea gigas, given their economic and ecological importance and worldwide distribution. Oysters were exposed for 1, 4 and 7 days to two different sublethal PAR concentrations (0, 1 and 100µgL-1). Cell viability, DNA damage in hemocytes and enzymatic activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH) and glutathione S-transferases (GST) were evaluated in oyster gills. In addition, changes at transcriptional level of Cu/Zn superoxide dismutase (SOD), catalase-like (CAT-like), cytochrome P450 genes (CYP30C1, CYP2AU2, CYP3071A1, CYP356A1), glutathione S-transferase isoforms (GST-ω and GST-π-like), cyclooxygenase (COX), fatty acid binding proteins-like (FABP-like), and caspase genes were evaluated in oyster gills and digestive gland. No changes in cell viability and DNA damage were observed in oysters exposed to both PAR concentrations. Similarly, no significant changes were detected in the major antioxidant enzymes (except for auxiliary enzyme GR) in oyster gills, suggesting that changes in GR activity are enough to counteract a potential oxidative stress in C. gigas gills under these experimental conditions. Furthermore, changes at transcriptional level are concentration and tissue dependent. PAR elicited an inhibition of CYP30C1, CYP3071A1 and FABP-like transcripts highlighting their role in drug metabolism, transport and detoxification of PAR in the gills. GST transcript levels were type, tissue and concentration-dependent. GST-π-like was down-regulated in oyster gills exposed to the lowest PAR concentration and up-regulated in the digestive gland of oysters exposed to the highest PAR concentration. However, GST-ω transcript levels were lower only in oysters digestive gland exposed to the lowest PAR concentration. Therefore, changes at transcriptional level were more sensitive to assess the exposure to PAR at environmental relevant concentrations.


Asunto(s)
Acetaminofén/toxicidad , Antioxidantes/metabolismo , Crassostrea/efectos de los fármacos , Daño del ADN , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Crassostrea/genética , Relación Dosis-Respuesta a Droga , Branquias/efectos de los fármacos , Branquias/enzimología , Hemocitos/efectos de los fármacos , Hemocitos/enzimología , Hemocitos/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética
2.
Braz J Biol ; 74(4): 967-76, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25627610

RESUMEN

The purpose of this study was to analyze the reproductive cycle of the oyster Crassostrea gasar (= C. brasiliana) in the field and the laboratory. The reproductive cycle of the animals was evaluated in the field at Sambaqui Beach, Florianópolis, SC (27° 29'18″ S and 48° 32'12″ W) from May 2008 through November 2009. In July, the animals were in the resting stage. The early growth stage began in August and was followed by the late growth stage in October. In November and December, the oysters began to enter the mature stage. Females in spawning condition were predominant during these months. The stages of the reproductive cycle were positively associated with temperature (r=0.77, P<0.01) and negatively associated with salinity (r=-0.56, P=0.042). These findings demonstrated that increased temperature and reduced salinity influence the reproductive development of Crassostrea gasar. The condition index (CI) of the animals was also associated with the seawater temperature. The highest values of the condition index were observed during the months when the temperature of the seawater was gradually increasing. A laboratory experiment was performed to test the effect of salinity on the reproductive cycle of the oysters. The experiment was conducted in standardized tanks. The animals were conditioned using two salinities (24‰ and 34‰). The salinity regime influenced the development of the gonadal tissue of the oysters. A salinity of 24‰ produced greater reproductive development.


Asunto(s)
Crassostrea/fisiología , Animales , Crassostrea/clasificación , Femenino , Gónadas/crecimiento & desarrollo , Masculino , Reproducción/fisiología , Salinidad , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA