Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Crit Rev Oncol Hematol ; 198: 104377, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710296

RESUMEN

Brain metastases (BrM) are common malignant lesions in the central nervous system, and pose a significant threat in advanced-stage malignancies due to delayed diagnosis and limited therapeutic options. Their distinct genomic profiles underscore the need for molecular profiling to tailor effective treatments. Recent advances in cancer biology have uncovered molecular drivers underlying tumor initiation, progression, and metastasis. This, coupled with the advances in molecular imaging technology and radiotracer synthesis, has paved the way for the development of innovative radiopharmaceuticals with enhanced specificity and affinity for BrM specific targets. Despite the challenges posed by the blood-brain barrier to effective drug delivery, several radiolabeled compounds have shown promise in detecting and targeting BrM. This manuscript provides an overview of the recent advances in molecular biomarkers used in nuclear imaging and targeted radionuclide therapy in both clinical and preclinical settings. Additionally, it explores potential theranostic applications addressing the unique challenges posed by BrM.

2.
Genet Mol Biol ; 46(3 Suppl 1): e20230190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38517370

RESUMEN

Photosynthetic phosphoenolpyruvate carboxylase (PEPC) catalyses the irreversible carboxylation of phosphoenolpyruvate (PEP), producing oxaloacetate (OAA). This enzyme catalyses the first step of carbon fixation in C4 photosynthesis, contributing to the high photosynthetic efficiency of C4 plants. PEPC is also involved in replenishing tricarboxylic acid cycle intermediates, such as OAA, being involved in the C/N balance. In plants, PEPCs are classified in two types: bacterial type (BTPC) and plant-type (PTPC), which includes photosynthetic and non-photosynthetic PEPCs. During C4 evolution, photosynthetic PEPCs evolved independently. C4 PEPCs evolved to be highly expressed and active in a spatial-specific manner. Their gene expression pattern is also regulated by developmental cues, light, circadian clock as well as adverse environmental conditions. However, the gene regulatory networks controlling C4 PEPC gene expression, namely its cell-specificity, are largely unknown. Therefore, after an introduction to the evolution of PEPCs, this review aims to discuss the current knowledge regarding the transcriptional regulation of C4 PEPCs, focusing on cell-specific and developmental expression dynamics, light and circadian regulation, as well as response to abiotic stress. In conclusion, this review aims to highlight the evolution, transcriptional regulation by different signals and importance of PEPC in C4 photosynthesis and its potential as tool for crop improvement.

3.
New Phytol ; 241(6): 2495-2505, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38323734

RESUMEN

Photosynthetic efficiency is reduced by the dual role of Rubisco, which acts either as a carboxylase or as an oxygenase, the latter leading to photorespiration. C4 photosynthesis evolved as a carbon-concentrating mechanism to reduce photorespiration. To engineer C4 into a C3 plant, it is essential to understand how C4 genes, such as phosphoenolpyruvate carboxylase (PEPC1), are regulated to be expressed at high levels and in a cell-specific manner. Yeast one-hybrid screening was used to show that OsPRI1, a rice bHLH transcription factor involved in iron homeostasis, binds to the Setaria viridis PEPC1 promoter. This promoter drives mesophyll-specific gene expression in rice. The role of OsPRI1 in planta was characterized using a rice line harbouring SvPEPC1pro ::GUS. We show that OsPRI1 activates the S. viridis PEPC1 promoter by binding to an N-box in the proximal promoter, and that GUS activity is highly reduced in SvPEPC1pro ::GUS lines when OsPRI1 is mutated. Cross-species comparisons showed that the SvPRI1 homolog binds to the SvPEPC1 promoter but the maize ZmPRI1 does not bind to the ZmPEPC1 promoter. Our results suggest that elements of the iron homeostasis pathway were co-opted to regulate PEPC1 gene expression during the evolution of some but not all C4 species.


Asunto(s)
Oryza , Setaria (Planta) , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Oryza/genética , Oryza/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Regiones Promotoras Genéticas/genética , Fotosíntesis/genética , Hierro
4.
J Exp Clin Cancer Res ; 42(1): 328, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38031171

RESUMEN

BACKGROUND: Lung metastasis is the most adverse clinical factor and remains the leading cause of osteosarcoma-related death. Deciphering the mechanisms driving metastatic spread is crucial for finding open therapeutic windows for successful organ-specific interventions that may halt or prevent lung metastasis. METHODS: We employed a mouse premetastatic lung-based multi-omics integrative approach combined with clinical features to uncover the specific changes that precede lung metastasis formation and identify novel molecular targets and biomarker of clinical utility that enable the design of novel therapeutic strategies. RESULTS: We found that osteosarcoma-bearing mice or those preconditioned with the osteosarcoma cell secretome harbour profound lung structural alterations with airway damage, inflammation, neutrophil infiltration, and extracellular matrix remodelling with increased deposition of fibronectin and collagens by resident stromal activated fibroblasts, favouring the adhesion of disseminated tumour cells. Systemic-induced microenvironmental changes, supported by transcriptomic and histological data, promoted and accelerated lung metastasis formation. Comparative proteome profiling of the cell secretome and mouse plasma identified a large number of proteins involved in extracellular-matrix organization, cell-matrix adhesion, neutrophil degranulation, and cytokine-mediated signalling, consistent with the observed lung microenvironmental changes. Moreover, we identified EFEMP1, an extracellular matrix glycoprotein exclusively secreted by metastatic cells, in the plasma of mice bearing a primary tumour and in biopsy specimens from osteosarcoma patients with poorer overall survival. Depletion of EFEMP1 from the secretome prevents the formation of lung metastasis. CONCLUSIONS: Integration of our data uncovers neutrophil infiltration and the functional contribution of stromal-activated fibroblasts in ECM remodelling for tumour cell attachment as early pro-metastatic events, which may hold therapeutic potential in preventing or slowing the metastatic spread. Moreover, we identified EFEMP1, a secreted glycoprotein, as a metastatic driver and a potential candidate prognostic biomarker for lung metastasis in osteosarcoma patients. Osteosarcoma-derived secreted factors systemically reprogrammed the lung microenvironment and fostered a growth-permissive niche for incoming disseminated cells to survive and outgrow into overt metastasis. Daily administration of osteosarcoma cell secretome mimics the systemic release of tumour-secreted factors of a growing tumour in mice during PMN formation; Transcriptomic and histological analysis of premetastatic lungs revealed inflammatory-induced stromal fibroblast activation, neutrophil infiltration, and ECM remodelling as early onset pro-metastatic events; Proteome profiling identified EFEMP1, an extracellular secreted glycoprotein, as a potential predictive biomarker for lung metastasis and poor prognosis in osteosarcoma patients. Osteosarcoma patients with EFEMP1 expressing biopsies have a poorer overall survival.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Animales , Ratones , Proteoma/metabolismo , Secretoma , Pulmón/patología , Neoplasias Pulmonares/patología , Osteosarcoma/patología , Neoplasias Óseas/patología , Glicoproteínas/metabolismo , Biomarcadores/metabolismo , Microambiente Tumoral , Proteínas de la Matriz Extracelular/metabolismo
5.
Plant Physiol ; 193(4): 2306-2320, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37555432

RESUMEN

Compared with the ancestral C3 state, C4 photosynthesis occurs at higher rates with improved water and nitrogen use efficiencies. In both C3 and C4 plants, rates of photosynthesis increase with light intensity and are maximal around midday. We determined that in the absence of light or temperature fluctuations, photosynthesis in maize (Zea mays) peaks in the middle of the subjective photoperiod. To investigate the molecular processes associated with these temporal changes, we performed RNA sequencing of maize mesophyll and bundle sheath strands over a 24-h time course. Preferential expression of C4 cycle genes in these cell types was strongest between 6 and 10 h after dawn when rates of photosynthesis were highest. For the bundle sheath, DNA motif enrichment and gene coexpression analyses suggested members of the DNA binding with one finger (DOF) and MADS (MINICHROMOSOME MAINTENANCE FACTOR 1/AGAMOUS/DEFICIENS/Serum Response Factor)-domain transcription factor families mediate diurnal fluctuations in C4 gene expression, while trans-activation assays in planta confirmed their ability to activate promoter fragments from bundle sheath expressed genes. The work thus identifies transcriptional regulators and peaks in cell-specific C4 gene expression coincident with maximum rates of photosynthesis in the maize leaf at midday.


Asunto(s)
Fotosíntesis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Fotosíntesis/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Expresión Génica
6.
Small ; 19(46): e2303940, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37469192

RESUMEN

The accelerated development of antitumor immunotherapies in recent years has brought immunomodulation into the spotlight. These include immunotherapeutic treatments with dendritic cell (DC)-based vaccines which can elicit tumor-specific immune responses and prolong survival. However, this personalized treatment has several drawbacks, including being costly, labor-intensive, and time consuming. This has sparked interest in producing artificial dendritic cells (aDCs) to open up the possibility of standardized "off-the-shelf" protocols and circumvent the cumbersome and expensive personalized medicine. aDCs take advantage of materials that can be designed and tailored for specific clinical applications. Here, an overview of the immunobiology underlying antigen presentation by DCs is provided in an attempt to select the key features to be mimicked and/or improved through the development of aDCs. The inherent properties of aDCs that greatly impact their performance in vivo and, consequently, the fate of the triggered immune response are also outlined.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Células Dendríticas , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Medicina de Precisión
7.
Int J Mol Sci ; 24(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176108

RESUMEN

Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/ß-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/ß-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Humanos , beta Catenina/metabolismo , Neoplasias Óseas/metabolismo , Resistencia a Antineoplásicos , Células Madre Neoplásicas/metabolismo , Osteosarcoma/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt , Receptores Notch/metabolismo , Proteínas Hedgehog/metabolismo
8.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37025062

RESUMEN

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , MicroARNs/genética , Ataxina-3/genética , Interferencia de ARN , Péptidos/genética
9.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232719

RESUMEN

Osteosarcoma is amongst the most prevalent bone sarcomas and majorly afflicts children and adolescents. Therapeutic regimens based on the triad of doxorubicin, cisplatin and methotrexate have been used as the state-of-the-art approach to clinical treatment and management, with no significant improvements in the general outcomes since their inception in the early 1970s. This fact raises the following problematic questions: Why do some patients still relapse despite an initial good response to therapy? Why do nearly 30% of patients not respond to neoadjuvant therapies? Does residual persistent disease contribute to relapses and possible metastatic dissemination? Accumulating evidence suggests that chemoresistant cancer stem cells may be the major culprits contributing to those challenging clinical outcomes. Herein, we revisit the maneuvers that cancer stem cells devise for eluding cell killing by the classic cytotoxic therapies used in osteosarcoma, highlighting studies that demonstrate the complex crosstalk of signaling pathways that cancer stem cells can recruit to become chemoresistant.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Neoplasias Óseas/metabolismo , Niño , Cisplatino/farmacología , Cisplatino/uso terapéutico , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Metotrexato/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Osteosarcoma/metabolismo , Transducción de Señal
10.
Small ; 18(49): e2203999, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316233

RESUMEN

Lung metastases represent the most adverse clinical factor and rank as the leading cause of osteosarcoma-related death. Nearly 80% of patients present lung micrometastasis at diagnosis not detected with current clinical tools. Herein, an exosome (EX)-based imaging tool is developed for lung micrometastasis by positron emission tomography (PET) using osteosarcoma-derived EXs as natural nanocarriers of the positron-emitter copper-64 (64 Cu). Exosomes are isolated from metastatic osteosarcoma cells and functionalized with the macrocyclic chelator NODAGA for complexation with 64 Cu. Surface functionalization has no effect on the physicochemical properties of EXs, or affinity for donor cells and endows them with favorable pharmacokinetics for in vivo studies. Whole-body PET/magnetic resonance imaging (MRI) images in xenografted models show a specific accumulation of 64 Cu-NODAGA-EXs in metastatic lesions as small as 2-3 mm or in a primary tumor, demonstrating the exquisite tropism of EXs for homotypic donor cells. The targetability for lung metastasis is also observed by optical imaging using indocyanine green (ICG)-labeled EXs and D-luciferin-loaded EXs. These findings show that tumor-derived EXs hold great potential as targeted imaging agents for the noninvasive detection of small lung metastasis by PET. This represents a step forward in the biomedical application of EXs in imaging diagnosis with increased translational potential.


Asunto(s)
Neoplasias Pulmonares , Tomografía de Emisión de Positrones , Humanos , Neoplasias Pulmonares/diagnóstico por imagen
11.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34639086

RESUMEN

The overexpression of human epidermal growth factor 2 (HER2) in breast cancer (BC) has been associated with a more aggressive tumor subtype, poorer prognosis and shorter overall survival. In this context, the development of HER2-targeted radiotracers is crucial to provide a non-invasive assessment of HER2 expression to select patients for HER2-targeted therapies, monitor response and identify those who become resistant. Antibodies represent ideal candidates for this purpose, as they provide high contrast images for diagnosis and low toxicity in the therapeutic setting. Of those, nanobodies (Nb) are of particular interest considering their favorable kinetics, crossing of relevant biological membranes and intratumoral distribution. The purpose of this review is to highlight the unique characteristics and advantages of Nb-based radiotracers in BC imaging and therapy. Additionally, radiolabeling methods for Nb including direct labeling, indirect labeling via prosthetic group and indirect labeling via complexation will be discussed, reporting advantages and drawbacks. Furthermore, the preclinical to clinical translation of radiolabeled Nbs as promising theranostic agents will be reported.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Terapia Molecular Dirigida , Receptor ErbB-2/antagonistas & inhibidores , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Anticuerpos de Dominio Único/inmunología
12.
Cell Rep ; 35(2): 108982, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852837

RESUMEN

Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Pirroles/farmacología , Tiazoles/farmacología , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/síntesis química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Doxorrubicina/farmacología , Descubrimiento de Drogas , Sinergismo Farmacológico , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Ratones , Ratones Desnudos , Unión Proteica , Pirroles/síntesis química , Tiazoles/síntesis química , Proteína p53 Supresora de Tumor/agonistas , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916029

RESUMEN

Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma. Two- and three-dimensional cell cultures and xenograft mouse models were used to unveil the antitumor activity and the underlying molecular mechanism of SLMP53-2 in melanoma. SLMP53-2 inhibited the growth of human melanoma cells in a p53-dependent manner through induction of cell cycle arrest and apoptosis. Notably, SLMP53-2 induced p53 stabilization by disrupting the p53-MDM2 interaction, enhancing p53 transcriptional activity. It also promoted the expression of p53-regulated microRNAs (miRNAs), including miR-145 and miR-23a. Moreover, it displayed anti-invasive and antimigratory properties in melanoma cells by inhibiting the epithelial-to-mesenchymal transition (EMT), angiogenesis and extracellular lactate production. Importantly, SLMP53-2 did not induce resistance in melanoma cells. Additionally, it synergized with vemurafenib, dacarbazine and cisplatin, and resensitized vemurafenib-resistant cells. SLMP53-2 also exhibited antitumor activity in human melanoma xenograft mouse models by repressing cell proliferation and EMT while stimulating apoptosis. This work discloses the p53-activating agent SLMP53-2 which has promising therapeutic potential in advanced melanoma, either as a single agent or in combination therapy. By targeting p53, SLMP53-2 may counteract major features of melanoma aggressiveness.

14.
Eur J Pharm Biopharm ; 161: 4-14, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33561524

RESUMEN

Pancreatic cancer (PC) is one of the deadliest cancers with a very short rate of survival and commonly without symptoms in its early stage. This absence of symptoms can lead to a late diagnosis associated with an advanced metastasis process, for which therapy is not effective. Although with extensive research in this field, the 5-year survival rate has not increased significantly. Notwithstanding, novel insights on risk factors, genetic mutations and molecular mechanisms pave the way for novel therapeutics that urge with a significant part of PC patients presenting resistance to chemotherapy treatments. Exosomes are presented as a promising strategy, working as delivery systems, since they can transport and release their cargoes after fusing with the membrane of pancreatic cells. Exosomes present advantages over liposomes, being less toxic and reaching higher levels in the bloodstream, working as molecule carriers that can inhibit oncogenes, activating tumor suppressor genes and inducing immune responses as well as controlling cell growth. This review intends to provide an overview about the scientific and clinical studies regarding the entire process, from isolation and purification of exosomes, to their design and transformation into anti-oncogenic drug delivering systems, particularly to target PC cells.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Portadores de Fármacos/metabolismo , Diseño de Fármacos , Humanos , Neoplasias Pancreáticas
15.
Pharmacol Res ; 164: 105309, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33212291

RESUMEN

In the last decade, immunotherapy led to a paradigm shift in the treatment of numerous malignancies. Alongside with monoclonal antibodies blocking programmed cell death receptor-1 (PD-1)/PD-L1 and cytotoxic T- lymphocyte antigen 4 (CTLA-4) immune checkpoints, cell-based approaches such as CAR-T cells and dendritic cell (DC) vaccines have strongly contributed to pushing forward this thrilling field. While initial strategies were mainly focused on monotherapeutic regimens, it is now consensual that the combination of immunotherapies tackling multiple cancer hallmarks can result in superior clinical outcomes. Here, we review in depth the pharmacological combination of DC-based vaccines that boost tumour elimination by eliciting and expanding effector immune cells, with the PD-1 inhibitor Nivolumab that allows blocking key tumour immune escape mechanisms. This combination represents an important step in cancer therapy, with a significant enhancement in patient survival in several types of tumours, paving an important way in establishing combinatorial immunotherapeutic strategies as first-line treatments.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas/inmunología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Inmunoterapia , Neoplasias/terapia , Nivolumab/administración & dosificación , Animales , Terapia Combinada , Humanos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores
16.
São Luís; s.n; 2021. 11 p. ilus.
Monografía en Portugués | LILACS, CONASS, Coleciona SUS, SES-MA | ID: biblio-1358305

RESUMEN

Esse Manual foi elaborado com a intenção de orientá-lo, quanto a importância do controle do prescrito e infundido na terapia nutricional enteral. Contém informações bem simples e seguras e que abrange toda a equipe multiprofissional.


Asunto(s)
Humanos , Nutrición Enteral/normas , Desnutrición/prevención & control
17.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322484

RESUMEN

Extracellular vesicles (EVs) are naturally secreted vesicles that have attracted a large amount of interest in nanomedicine in recent years due to their innate biocompatibility, high stability, low immunogenicity, and important role in cell-to-cell communication during pathological processes. Their versatile nature holds great potential to improve the treatment of several diseases through their use as imaging biomarkers, therapeutic agents, and drug-delivery vehicles. However, the clinical translation of EV-based approaches requires a better understanding of their in vivo behavior. Several imaging technologies have been used for the non-invasive in vivo tracking of EVs, with a particular emphasis on nuclear imaging due to its high sensitivity, unlimited penetration depth and accurate quantification. In this article, we will review the biological function and inherent characteristics of EVs and provide an overview of molecular imaging modalities used for their in vivo monitoring, with a special focus on nuclear imaging. The advantages of radionuclide-based imaging modalities make them a promising tool to validate the use of EVs in the clinical setting, as they have the potential to characterize in vivo the pharmacokinetics and biological behavior of the vesicles. Furthermore, we will discuss the current methods available for radiolabeling EVs, such as covalent binding, encapsulation or intraluminal labeling and membrane radiolabeling, reporting the advantages and drawbacks of each radiolabeling approach.


Asunto(s)
Vesículas Extracelulares/metabolismo , Radioisótopos , Animales , Comunicación Celular/fisiología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanomedicina/métodos
18.
Pharmaceutics ; 12(2)2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32075343

RESUMEN

Throughout the last decades, dendritic cell (DC)-based anti-tumor vaccines have proven to be a safe therapeutic approach, although with inconsistent clinical results. The functional limitations of ex vivo monocyte-derived dendritic cells (MoDCs) commonly used in these therapies are one of the pointed explanations for their lack of robustness. Therefore, a great effort has been made to identify DC subsets with superior features for the establishment of effective anti-tumor responses and to apply them in therapeutic approaches. Among characterized human DC subpopulations, conventional type 1 DCs (cDC1) have emerged as a highly desirable tool for empowering anti-tumor immunity. This DC subset excels in its capacity to prime antigen-specific cytotoxic T cells and to activate natural killer (NK) and natural killer T (NKT) cells, which are critical factors for an effective anti-tumor immune response. Here, we sought to revise the immunobiology of cDC1 from their ontogeny to their development, regulation and heterogeneity. We also address the role of this functionally thrilling DC subset in anti-tumor immune responses and the most recent efforts to apply it in cancer immunotherapy.

19.
Front Immunol ; 11: 593363, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613517

RESUMEN

Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Medio de Cultivo Libre de Suero , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunoterapia , Cultivo Primario de Células/métodos , Técnicas de Cultivo Celular por Lotes/métodos , Técnicas de Cultivo Celular por Lotes/normas , Biomarcadores , Diferenciación Celular , Citocinas/metabolismo , Pruebas Inmunológicas de Citotoxicidad , Células Dendríticas/citología , Humanos , Inmunofenotipificación , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Fagocitosis , Cultivo Primario de Células/normas
20.
J Immunother Cancer ; 7(1): 238, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484548

RESUMEN

Dendritic cells (DCs) are central players in the immune system, with an exquisite capacity to initiate and modulate immune responses. These functional characteristics have led to intense research on the development of DC-based immunotherapies, particularly for oncologic diseases. During recent decades, DC-based vaccines have generated very promising results in animal studies, and more than 300 clinical assays have demonstrated the safety profile of this approach. However, clinical data are inconsistent, and clear evidence of meaningful efficacy is still lacking. One of the reasons for this lack of evidence is the limited functional abilities of the used ex vivo-differentiated DCs. Therefore, alternative approaches for targeting and modulating endogenous DC subpopulations have emerged as an attractive concept. Here, we sought to revise the evolution of several strategies for the in situ mobilization and modulation of DCs. The first approaches using chemokine-secreting irradiated tumor cells are addressed, and special attention is given to the cutting-edge injectable bioengineered platforms, programmed to release chemoattractants, tumor antigens and DC maturating agents. Finally, we discuss how our increasing knowledge of DC biology, the use of neoantigens and their combination with immune checkpoint inhibitors can leverage the refinement of these polymeric vaccines to boost their antitumor efficacy.


Asunto(s)
Materiales Biocompatibles/química , Vacunas contra el Cáncer/inmunología , Reprogramación Celular , Células Dendríticas/inmunología , Sistemas de Liberación de Medicamentos , Inmunoterapia/métodos , Neoplasias/terapia , Animales , Materiales Biocompatibles/administración & dosificación , Humanos , Neoplasias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...