Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36830160

RESUMEN

Due to the environmental risks of conventional Cu-based fungicides, Cu-loaded chitosan nanoparticles have been developed as nano-pesticides, aiming to protect plants against different diseases. In this sense, the objective was to verify the effects of chitosan nanoparticles containing Cu2+ ions on leaf discs of Coffea arabica cv. IPR 100 infected with Hemileia vastatrix. The treatments were water as a control (CONT), unloaded chitosan nanoparticles (NP), chitosan nanoparticles containing Cu2+ ions (NPCu), and free Cu2+ ions (Cu). Different concentrations of NP (0.25; 0.5; 1 g L-1) and Cu2+ ions (1.25; 2.5; 5 mmol L-1) were tested. The severity of the coffee rust was 42% in the CONT treatment, 22% in NP, and 2% in NPCu and Cu. The treatments protected coffee leaves; however, NPCu stood out for initial stress reduction, decreasing Cu phytotoxicity, promoting photosynthetic activity maintenance, and increasing antioxidant responses, conferring significant protection against coffee rust. At low concentrations (1.25 mmol L-1), NPCu showed higher bioactivity than Cu. These results suggest that Cu-loaded chitosan nanoparticles can induce a more significant plant defense response to the infection of Hemileia vastatrix than conventional Cu, avoiding the toxic effects of high Cu concentrations. Thus, this nanomaterial has great potential to be used as nano-pesticides for disease management.

2.
Plants (Basel) ; 11(23)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36501285

RESUMEN

The nanoencapsulation of nitric oxide (NO) donors is an attractive technique to protect these molecules from rapid degradation, expanding, and enabling their use in agriculture. Here, we evaluated the effect of the soil application of chitosan nanoparticles containing S-nitroso-MSA (a S-nitrosothiol) on the protection of soybeans (Glycine max cv. BRS 257) against copper (Cu) stress. Soybeans were grown in a greenhouse in soil supplemented with 164 and 244 mg kg-1 Cu and treated with a free or nanoencapsulated NO donor at 1 mM, as well as with nanoparticles without NO. There were also soybean plants treated with distilled water and maintained in soil without Cu addition (control), and with Cu addition (water). The exogenous application of the nanoencapsulated and free S-nitroso-MSA improved the growth and promoted the maintenance of the photosynthetic activity in Cu-stressed plants. However, only the nanoencapsulated S-nitroso-MSA increased the bioavailability of NO in the roots, providing a more significant induction of the antioxidant activity, the attenuation of oxidative damage, and a greater capacity to mitigate the root nutritional imbalance triggered by Cu stress. The results suggest that the nanoencapsulation of the NO donors enables a more efficient delivery of NO for the protection of soybean plants under Cu stress.

3.
Planta ; 253(2): 43, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479798

RESUMEN

MAIN CONCLUSION: Root antioxidant defense, restricted root-to-shoot Cu translocation, altered nutrient partition, and leaf gas exchange adjustments occurred as tolerance mechanisms of soybean plants to increasing soil Cu levels. The intensive application of copper (Cu) fungicides has been related to the accumulation of this metal in agricultural soils. This study aimed to evaluate the effects of increasing soil Cu levels on soybean (Glycine max) plants. Soybean was cultivated under greenhouse conditions in soils containing different Cu concentrations (11.2, 52.3, 79.4, 133.5, 164.0, 205.1, or 243.8 mg kg-1), and biochemical and morphophysiological plant responses were analyzed through linear and nonlinear regression models. Although Cu concentrations around 50 mg kg-1 promoted some positive effects on the initial development of soybean plants (e.g., increased root length and dry weight), these Cu concentrations also induced root oxidative stress and activated defense mechanisms (such as the induction of antioxidant response, N and S accumulation in the roots). At higher concentrations, Cu led to growth inhibition (mainly of the root), nutritional imbalance, and damage to the photosynthetic apparatus of soybean plants, resulting in decreased CO2 assimilation and stomatal conductance. In contrast, low translocation of Cu to the leaves, conservative water use, and increased carboxylation efficiency contributed to the partial mitigation of Cu-induced stress. These responses allowed soybean plants treated with Cu levels in the soil as high as 90 mg kg-1 to maintain growth parameters higher than or similar to those of plants in the non-contaminated soil. These data provide a warning for the potentially deleterious consequences of the increasing use of Cu-based fungicides. However, it is necessary to verify how the responses to Cu contamination are affected by different types of soil and soybean cultivars.


Asunto(s)
Cobre , Glycine max , Modelos Estadísticos , Contaminantes del Suelo , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Análisis de Regresión , Suelo/química , Glycine max/efectos de los fármacos
4.
Biopolymers ; 98(4): 322-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23193596

RESUMEN

The antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as components of the innate immune system. Recently, it was demonstrated that a single AMP can perform various functions; this ability is known as "peptide promiscuity." However, little is known about promiscuity in plant AMPs without disulfide bonds. This study was carried out to evaluate the promiscuity of Cn-AMP1: a promising disulfide-free plant peptide with reduced size and cationic and hydrophobic properties. Its activity against human pathogenic bacteria and fungal pathogens, as well as its in vitro immunostimulatory activity and effects on cancerous and healthy mammalian cell proliferation were studied here. Cn-AMP1 exerts antimicrobial effects against Gram-positive bacteria, Gram-negative bacteria, and fungi. Moreover, tumor cell viability activity in Caco-2 cells, as well as immunostimulatory activity by evaluating upregulated inflammatory-cytokine secretion by monocytes was also positively observed. Cn-AMP1 does not exhibit a well-defined conformation in aqueous solution and probably undergoes a 3(10)-helix transition in hydrophobic environments. The experimental results support the promiscuous activity of Cn-AMP1, presenting a wide range of activities, including antibacterial, antifungal, and immunostimulatory activity. In the future, Cn-AMP1 should be used in the development of novel biopharmaceuticals, mainly due to its reduced size and broad spectrum of activity.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos/farmacología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antifúngicos/química , Antifúngicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Péptidos/química
5.
PLoS One ; 7(3): e33639, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438972

RESUMEN

Healthcare-associated infections (HAIs) are causes of mortality and morbidity worldwide. The prevalence of bacterial resistance to common antibiotics has increased in recent years, highlighting the need to develop novel alternatives for controlling these pathogens. Pitviper venoms are composed of a multifaceted mixture of peptides, proteins and inorganic components. L-amino oxidase (LAO) is a multifunctional enzyme that is able to develop different activities including antibacterial activity. In this study a novel LAO from Bothrops mattogrosensis (BmLAO) was isolated and biochemically characterized. Partial enzyme sequence showed full identity to Bothrops pauloensis LAO. Moreover, LAO here isolated showed remarkable antibacterial activity against Gram-positive and -negative bacteria, clearly suggesting a secondary protective function. Otherwise, no cytotoxic activities against macrophages and erythrocytes were observed. Finally, some LAO fragments (BmLAO-f1, BmLAO-f2 and BmLAO-f3) were synthesized and further evaluated, also showing enhanced antimicrobial activity. Peptide fragments, which are the key residues involved in antimicrobial activity, were also structurally studied by using theoretical models. The fragments reported here may be promising candidates in the rational design of new antibiotics that could be used to control resistant microorganisms.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Crotálidos/química , Venenos de Crotálidos/farmacología , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/farmacología , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/genética , Venenos de Crotálidos/genética , Evaluación Preclínica de Medicamentos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Técnicas In Vitro , L-Aminoácido Oxidasa/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/farmacología , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática , Viperidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...