Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 12406, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455808

RESUMEN

Recent studies have proposed that nucleic acids act as potential cofactors for protein aggregation and prionogenesis. By means of sedimentation, transmission electron microscopy, circular dichroism, static and dynamic light scattering, we have studied how RNA can influence the aggregation of the murine recombinant prion protein (rPrP). We find that RNA, independent of its sequence, source and size, modulates rPrP aggregation in a bimodal fashion, affecting both the extent and the rate of rPrP aggregation in a concentration dependent manner. Analogous to RNA-induced liquid-liquid phase transitions observed for other proteins implicated in neurodegenerative diseases, high protein to RNA ratios stimulate rPrP aggregation, while low ratios suppress it. However, the latter scenario also promotes formation of soluble oligomeric aggregates capable of seeding de novo rPrP aggregation. Furthermore, RNA co-aggregates with rPrP and thereby gains partial protection from RNase digestion. Our results also indicate that rPrP interacts with the RNAs with its N-terminus. In summary, this study elucidates the proposed adjuvant role of RNA in prion protein aggregation and propagation, and thus advocates an auxiliary role of the nucleic acids in protein aggregation in general.


Asunto(s)
Proteínas Priónicas/metabolismo , ARN/metabolismo , Animales , Dispersión Dinámica de Luz , Cinética , Ratones , Proteínas Priónicas/química , Proteínas Priónicas/genética , Agregado de Proteínas , ARN/química , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasas/metabolismo
2.
J Biol Inorg Chem ; 19(6): 839-51, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24557708

RESUMEN

Conversion of prion protein (PrP) to an altered conformer, the scrapie PrP (PrP(Sc)), is a critical step in the development of transmissible spongiform encephalopathies. Both Cu(II) and nucleic acid molecules have been implicated in this conversion. Full-length PrP can bind up to six copper ions; four Cu(II) binding sites are located in the octarepeat domain (residues 60-91), and His-96 and His-111 coordinate two additional copper ions. Experimental evidence shows that PrP binds different molecules, resulting in diverse cellular signaling events. However, there is little information about the interaction of macromolecular ligands with Cu(II)-bound PrP. Both RNA and DNA sequences can bind PrP, and this interaction results in reciprocal conformational changes. Here, we investigated the interaction of Cu(II) and nucleic acids with amyloidogenic non-octarepeat PrP peptide models (comprising human PrP residues 106-126 and hamster PrP residues 109-149) that retain His-111 as the copper-anchoring residue. The effect of Cu(II) and DNA or RNA sequences in the aggregation, conformation, and toxicity of PrP domains was investigated at low and neutral pH. Circular dichroism and EPR spectroscopy data indicate that interaction of the PrP peptides with Cu(II) and DNA occurs at pH 7. This dual interaction induces conformational changes in the peptides, modulating their aggregation, and affecting the morphology of the aggregated species, resulting in different cytotoxic effects. These results provide new insights into the role of Cu(II) and nucleic acid sequences in the structural conversion and aggregation of PrP, which are both critical events related to prion pathogenesis.


Asunto(s)
Cobre/química , Metaloproteínas/farmacología , Ácidos Nucleicos/química , Péptidos/química , Priones/química , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Metaloproteínas/química , Ratones , Relación Estructura-Actividad
3.
Biophys Rev ; 6(1): 97-110, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28509960

RESUMEN

Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein-NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer's, Parkinson's, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-ß peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs.

4.
Biochemistry ; 51(27): 5402-13, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22691027

RESUMEN

A misfolded form of the prion protein (PrP) is the primary culprit in mammalian prion diseases. It has been shown that nucleic acids catalyze the misfolding of cellular PrP into a scrapie-like conformer. It has also been observed that the interaction of PrP with nucleic acids is nonspecific and that the complex can be toxic to cultured cells. No direct correlation has yet been drawn between changes in PrP structure and toxicity due to nucleic acid binding. Here we asked whether different aggregation, stability, and toxicity effects are detected when nonrelated DNA sequences interact with recombinant PrP. Using spectroscopic techniques to analyze PrP tertiary and secondary structure and cellular assays to assess toxicity, we found that rPrP-DNA interactions lead to different aggregated species, depending on the sequence and size of the oligonucleotide tested. A 21-mer DNA sequence (D67) induced higher levels of aggregation and also dissimilar structural changes in rPrP, compared to binding to oligonucleotides with the same length and different nucleotide sequences or different GC contents. The rPrP-D67 complex induced significant cell dysfunction, which appears to be correlated with the biophysical properties of the complex. Although sequence specificity is not apparent for PrP-nucleic acid interactions, we believe that particular nucleic acid patterns, possibly related to GC content, oligonucleotide length, and structure, govern PrP recognition. Understanding the structural and cellular effects observed for PrP-nucleic acid complexes may shed light on the still mysterious pathology of the prion protein.


Asunto(s)
Citotoxinas/química , Citotoxinas/toxicidad , ADN/metabolismo , Priones/química , Priones/toxicidad , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Citotoxinas/metabolismo , ADN/genética , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Priones/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Solubilidad
5.
Wiley Interdiscip Rev RNA ; 3(3): 415-28, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22095764

RESUMEN

Prion diseases remain a challenge to modern science in the 21st century because of their capacity for transmission without an encoding nucleic acid. PrP(Sc), the infectious and alternatively folded form of the PrP prion protein, is capable of self-replication, using PrP(C), the properly folded form of PrP, as a template. This process is associated with neuronal death and the clinical manifestation of prion-based diseases. Unfortunately, little is known about the mechanisms that drive this process. Over the last decade, the theory that a nucleic acid, such as an RNA molecule, might be involved in the process of prion structural conversion has become more widely accepted; such a nucleic acid would act as a catalyst rather than encoding genetic information. Significant amounts of data regarding the interactions of PrP with nucleic acids have created a new foundation for understanding prion conversion and the transmission of prion diseases. Our knowledge has been enhanced by the characterization of a large group of RNA molecules known as non-coding RNAs, which execute a series of important cellular functions, from transcriptional regulation to the modulation of neuroplasticity. The RNA-binding properties of PrP along with the competition with other polyanions, such as glycosaminoglycans and nucleic acid aptamers, open new avenues for therapy.


Asunto(s)
Priones/metabolismo , ARN no Traducido/metabolismo , Animales , Catálisis , Glicosaminoglicanos/metabolismo , Humanos , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Priones/química
6.
Methods ; 53(3): 306-17, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21145399

RESUMEN

The concept that transmissible spongiform encephalopathies (TSEs) are caused only by proteins has changed the traditional paradigm that disease transmission is due solely to an agent that carries genetic information. The central hypothesis for prion diseases proposes that the conversion of a cellular prion protein (PrP(C)) into a misfolded, ß-sheet-rich isoform (PrP(Sc)) accounts for the development of (TSE). There is substantial evidence that the infectious material consists chiefly of a protein, PrP(Sc), with no genomic coding material, unlike a virus particle, which has both. However, prions seem to have other partners that chaperone their activities in converting the PrP(C) into the disease-causing isoform. Nucleic acids (NAs) and glycosaminoglycans (GAGs) are the most probable accomplices of prion conversion. Here, we review the recent experimental approaches that have been employed to characterize the interaction of prion proteins with nucleic acids and glycosaminoglycans. A PrP recognizes many nucleic acids and GAGs with high affinities, and this seems to be related to a pathophysiological role for this interaction. A PrP binds nucleic acids and GAGs with structural selectivity, and some PrP:NA complexes can become proteinase K-resistant, undergoing amyloid oligomerization and conversion to a ß-sheet-rich structure. These results are consistent with the hypothesis that endogenous polyanions (such as NAs and GAGs) may accelerate the rate of prion disease progression by acting as scaffolds or lattices that mediate the interaction between PrP(C) and PrP(Sc) molecules. In addition to a still-possible hypothesis that nucleic acids and GAGs, especially those from the host, may modulate the conversion, the recent structural characterization of the complexes has raised the possibility of developing new diagnostic and therapeutic strategies.


Asunto(s)
ADN/metabolismo , Glicosaminoglicanos/metabolismo , Priones/metabolismo , ARN/metabolismo , Animales , ADN/química , Glicosaminoglicanos/química , Humanos , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/prevención & control , Priones/química , Priones/patogenicidad , Conformación Proteica , Transporte de Proteínas , ARN/química
7.
J Am Chem Soc ; 133(2): 334-44, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21142149

RESUMEN

The conversion of cellular prion protein (PrP(C)) into the pathological conformer PrP(Sc) requires contact between both isoforms and probably also requires a cellular factor, such as a nucleic acid or a glycosaminoglycan (GAG). Little is known about the structural features implicit in the GAG-PrP interaction. In the present work, light scattering, fluorescence, circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy were used to describe the chemical and physical properties of the murine recombinant PrP 23-231 interaction with low molecular weight heparin (LMWHep) at pH 7.4 and 5.5. LMWHep interacts with rPrP 23-231, thereby inducing transient aggregation. The interaction between murine rPrP and heparin at pH 5.5 had a stoichiometry of 2:1 (LMWHep:rPrP 23-231), in contrast to a 1:1 binding ratio at pH 7.4. At binding equilibrium, NMR spectra showed that rPrP complexed with LMWHep had the same general fold as that of the free protein, even though the binding can be indicated by significant changes in few residues of the C-terminal domain, especially at pH 5.5. Notably, the soluble LMWHep:rPrP complex prevented RNA-induced aggregation. We also investigated the interaction between LMWHep and the deletion mutants rPrP Δ51-90 and Δ32-121. Heparin did not bind these constructs at pH 7.4 but was able to interact at pH 5.5, indicating that this glycosaminoglycan binds the octapeptide repeat region at pH 7.4 but can also bind other regions of the protein at pH 5.5. The interaction at pH 5.5 was dependent on histidine residues of the murine rPrP 23-231. Depending on the cellular milieu, the PrP may expose different regions that can bind GAG. These results shed light on the role of GAGs in PrP conversion. The transient aggregation of PrP may explain why some GAGs have been reported to induce the conversion into the misfolded, scrapie conformation, whereas others are thought to protect against conversion. The acquired resistance of the complex against RNA-induced aggregation explains some of the unique properties of the PrP interaction with GAGs.


Asunto(s)
Heparina/química , Priones/química , ARN/química , Animales , Sitios de Unión , Glicosaminoglicanos/química , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Ratones , Proteínas Recombinantes/química
8.
Acc Chem Res ; 43(2): 271-9, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19817406

RESUMEN

Protein misfolding has been implicated in a large number of diseases termed protein- folding disorders (PFDs), which include Alzheimer's disease, Parkinson's disease, transmissible spongiform encephalopathies, familial amyloid polyneuropathy, Huntington's disease, and type II diabetes. In these diseases, large quantities of incorrectly folded proteins undergo aggregation, destroying brain cells and other tissues. The interplay between ligand binding and hydration is an important component of the formation of misfolded protein species. Hydration drives various biological processes, including protein folding, ligand binding, macromolecular assembly, enzyme kinetics, and signal transduction. The changes in hydration and packing, both when proteins fold correctly or when folding goes wrong, leading to PFDs, are examined through several biochemical, biophysical, and structural approaches. Although in many cases the binding of a ligand such as a nucleic acid helps to prevent misfolding and aggregation, there are several examples in which ligands induce misfolding and assembly into amyloids. This occurs simply because the formation of structured aggregates (such as protofibrillar and fibrillar amyloids) involves decreases in hydration, formation of a hydrogen-bond network in the secondary structure, and burying of nonpolar amino acid residues, processes that also occur in the normal folding landscape. In this Account, we describe the present knowledge of the folding and misfolding of different proteins, with a detailed emphasis on mammalian prion protein (PrP) and tumoral suppressor protein p53; we also explore how ligand binding and hydration together influence the fate of the proteins. Anfinsen's paradigm that the structure of a protein is determined by its amino acid sequence is to some extent contradicted by the observation that there are two isoforms of the prion protein with the same sequence: the cellular and the misfolded isoform. The cellular isoform of PrP has a disordered N-terminal domain and a highly flexible, not-well-packed C-terminal domain, which might account for its significant hydration. When PrP binds to biological molecules, such as glycosaminoglycans and nucleic acids, the disordered segments appear to fold and become less hydrated. Formation of the PrP-nucleic acid complex seems to accelerate the conversion of the cellular form of the protein into the disease-causing isoform. For p53, binding to some ligands, including nucleic acids, would prevent misfolding of the protein. Recently, several groups have begun to analyze the folding-misfolding of the individual domains of p53, but several questions remain unanswered. We discuss the implications of these findings for understanding the productive and incorrect folding pathways of these proteins in normal physiological states and in human disease, such as prion disorders and cancer. These studies are shown to lay the groundwork for the development of new drugs.


Asunto(s)
Priones/química , Priones/metabolismo , Pliegue de Proteína , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Agua/química , Humanos , Ligandos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo
9.
Front Biosci (Landmark Ed) ; 15(1): 132-50, 2010 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-20036811

RESUMEN

Since the first description of prion diseases, great effort has been made toward comprehending this new paradigm in biology. Despite large advances in the field, many questions remain unanswered, especially concerning the conversion of PrP(C) into PrP(Sc). How this conformational transition evolves is a crucial problem that must be solved in order to attain further progress in therapeutics and prevention. Recent developments have indicated the requirement for partners of the prion protein in triggering the conversion. In the present review, we will explore the interaction of PrP with some of its most intriguing partners, such as sulfated glycans and nucleic acids. These molecules seem to play a dual role in prion biology and could be fundamental to explaining how prion diseases arise, as well as in the development of effective therapeutic approaches.


Asunto(s)
Glicosaminoglicanos/metabolismo , Ácidos Nucleicos/metabolismo , Enfermedades por Prión/metabolismo , Priones/metabolismo , Animales , Humanos , Modelos Moleculares , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Priones/química , Unión Proteica , Conformación Proteica
10.
Prion ; 2(2): 64-6, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19098437

RESUMEN

In the past decade, the interaction between prions and nucleic acids has garnered significant attention from the scientific community. for many years, the participation of RNA and/or DNA in prion pathology has been largely ruled out by the "protein-only" hypothesis, but this is now being reconsidered. Experimental data now indicate that nucleic acids (particularly RNA), besides being carriers of genetic information, function as important key components during development, physiological responsiveness and cellular signaling. This revelation has brought a new perspective to prion pathology. Here we discuss the role of RNA molecules in prion protein aggregation and the resulting cellular toxicity. We combine our most recent findings with existing literature to shed new light on this exciting field of research.


Asunto(s)
Priones/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Humanos , Priones/genética , Unión Proteica , ARN/genética , Proteínas de Unión al ARN/genética , Transducción de Señal
11.
J Biol Chem ; 283(28): 19616-25, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18456654

RESUMEN

Conversion of the cellular prion protein (PrP(C)) into its altered conformation, PrP(Sc), is believed to be the major cause of prion diseases. Although PrP is the only identified agent for these diseases, there is increasing evidence that other molecules can modulate the conversion. We have found that interaction of PrP with double-stranded DNA leads to a protein with higher beta-sheet content and characteristics similar to those of PrP(Sc). RNA molecules can also interact with PrP and potentially modulate PrP(C) to PrP(Sc) conversion or even bind differentially to both PrP isoforms. Here, we investigated the interaction of recombinant murine PrP with synthetic RNA sequences and with total RNA extracted from cultured neuroblastoma cells (N2aRNA). We found that PrP interacts with N2aRNA with nanomolar affinity, aggregates upon this interaction, and forms species partially resistant to proteolysis. RNA does not bind to N-terminal deletion mutants of PrP, indicating that the N-terminal region is important for this process. Cell viability assays showed that only the N2aRNA extract induces PrP-RNA aggregates that can alter the homeostasis of cultured cells. Small RNAs bound to PrP give rise to nontoxic small oligomers. Nuclear magnetic resonance measurements of the PrP-RNA complex revealed structural changes in PrP, but most of its native fold is maintained. These results indicate that there is selectivity in the species generated by interaction with different molecules of RNA. The catalytic effect of RNA on the PrP(C)-->PrP(Sc) conversion depends on the RNA sequence, and small RNA molecules may exert a protective effect.


Asunto(s)
Neuroblastoma/química , Proteínas PrPC/química , Proteínas PrPSc/química , ARN Catalítico/química , ARN Neoplásico/química , Proteínas de Unión al ARN/química , Animales , Catálisis , Línea Celular Tumoral , Supervivencia Celular , ADN de Neoplasias/química , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Homeostasis , Espectroscopía de Resonancia Magnética , Ratones , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
12.
Biophys J ; 89(4): 2667-76, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16040743

RESUMEN

The main hypothesis for prion diseases is that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we investigate the effects of amino-terminal deletion mutations, rPrP(Delta51-90) and rPrP(Delta32-121), on the stability and the packing properties of recombinant murine PrP. The region lacking in rPrP(Delta51-90) is involved physiologically in copper binding and the other construct lacks more amino-terminal residues (from 32 to 121). The pressure stability is dramatically reduced with decreasing N-domain length and the process is not reversible for rPrP(Delta51-90) and rPrP(Delta32-121), whereas it is completely reversible for the wild-type form. Decompression to atmospheric pressure triggers immediate aggregation for the mutants in contrast to a slow aggregation process for the wild-type, as observed by Fourier-transform infrared spectroscopy. The temperature-induced transition leads to aggregation of all rPrPs, but the unfolding temperature is lower for the rPrP amino-terminal deletion mutants. The higher susceptibility to pressure of the amino-terminal deletion mutants can be explained by a change in hydration and cavity distribution. Taken together, our results show that the amino-terminal region has a pivotal role on the development of prion misfolding and aggregation.


Asunto(s)
Priones/análisis , Priones/química , Sustitución de Aminoácidos , Animales , Sitios de Unión , Dimerización , Ratones , Complejos Multiproteicos/análisis , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Priones/genética , Unión Proteica , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Relación Estructura-Actividad
13.
J Biol Chem ; 279(31): 32354-9, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15173173

RESUMEN

The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we compare the stability against pressure and the thermomechanical properties of the alpha-helical and beta-sheet conformations of recombinant murine prion protein, designated as alpha-rPrP and beta-rPrP, respectively. High temperature induces aggregates and a large gain in intermolecular antiparallel beta-sheet (beta-rPrP), a conformation that shares structural similarity with PrP(Sc). alpha-rPrP is highly stable, and only pressures above 5 kilobars (1 kilobar = 100 MegaPascals) cause reversible denaturation, a process that leads to a random and turnrich conformation with concomitant loss of alpha-helix, as measured by Fourier transform infrared spectroscopy. In contrast, aggregates of beta-rPrP are very sensitive to pressure, undergoing transition into a dissociated species that differs from the denatured form derived from alpha-rPrP. The higher susceptibility to pressure of beta-rPrP can be explained by its less hydrated structure. Pressure perturbation calorimetry supports the view that the accessible surface area of alpha-rPrP is much higher than that of beta-rPrP, which explains the lower degree of hydration of beta-rPrP. Our findings shed new light on the mechanism of prion conversion and show how water plays a prominent role. Our results allow us to propose a volume and free energy diagram of the different species involved in the conversion and aggregation. The existence of different folded conformations as well as different denatured states of PrP may explain the elusive character of its conversion into a pathogenic form.


Asunto(s)
Priones/química , Animales , Calorimetría , Calor , Cinética , Ratones , Presión , Conformación Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica , Agua/química
14.
J Biol Chem ; 279(7): 5346-52, 2004 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-14634010

RESUMEN

The prion protein (PrP) is the major agent implicated in the diseases known as transmissible spongiform encephalopathies. The onset of transmissible spongiform encephalopathy is related to a change in conformation of the PrP(C), which loses most of its alpha-helical content, becoming a beta-sheet-rich protein, known as PrP(Sc). Here we have used two Syrian hamster prion domains (PrP 109-141 and PrP 109-149) and the murine recombinant PrP (rPrP 23-231) to investigate the effects of anilino-naphtalene compounds on prion oligomerization and aggregation. Aggregation in the presence of bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate), ANS (1-anilinonaphthalene-8-sulfonate), and AmNS (1-amino-5-naphtalenesulfonate) was monitored. Bis-ANS was the most effective inhibitor of prion peptide aggregation. Bis-ANS binds strongly to rPrP 23-231 leading to a substantial increase in beta-sheet content and to limited oligomerization. More strikingly, the binding of bis-ANS to full-length rPrP is diminished by the addition of nanomolar concentrations of oligonucleotides, demonstrating that they compete for the same binding site. Thus, bis-ANS displays properties similar to those of nucleic acids, causing oligomerization and conversion to beta-sheet (Cordeiro, Y., Machado, F., Juliano, L., Juliano, M. A., Brentani, R. R., Foguel, D., and Silva, J. L. (2001) J. Biol. Chem. 276, 49400-49409). This dual effect of bis-ANS on prion protein makes this compound highly important to sequester crucial conformations of the protein, which may be useful to the understanding of the disease and to serve as a lead for the development of new therapeutic strategies.


Asunto(s)
Naftalenosulfonatos de Anilina/farmacología , Priones/química , Naftalenosulfonatos de Anilina/química , Animales , Dicroismo Circular , Cricetinae , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Cinética , Luz , Mesocricetus , Modelos Químicos , Oligonucleótidos/química , Péptidos/química , Enfermedades por Prión/metabolismo , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Dispersión de Radiación , Espectrometría de Fluorescencia , Espectrofotometría , Factores de Tiempo , Rayos Ultravioleta , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...