Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Trop ; 247: 107018, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37673134

RESUMEN

The neglected parasitosis giardiasis is one of the most common intestinal infections worldwide, affecting mainly infants and young children. Giardia duodenalis may disturb the local microbiome, leading to intestinal ecosystem disorders, and altering different processes in the host, such as the immune response. Nevertheless, the alterations promoted by G. duodenalis on the human gut microbiome have not been thoroughly investigated. Here, we characterized the gut microbiota of G. duodenalis-infected children and determine the main alterations promoted by the parasite. To do so, fecal samples of 26 infected and four uninfected children aged 2 to 6 years old were processed for High Efficiency Microarray analysis, in order to describe their bacterial and viral profiles. Then, we quantified the total bacterial population by qPCR and assessed fecal calprotectin levels, which are closely related with gut inflammation. A total of 286 bacteria's species and 17 viruses' strains were identified. Our results revealed no statistically significant differences between G. duodenalis positive and negative groups in the taxa's phyla and families. However, bacterial species diversity was increased in children infected with G. duodenalis (p < 0.05), while the total number of bacteria was decreased (p < 0.05). Considering the virome analysis, 17 different strains were identified, 88% being bacteriophages. The correlation analysis revealed an important disruption in the balance of DNA virus and bacteria within the intestinal microbiota of Giardia-positive children. Our findings constitute the first description of the gut virome of Giardia-infected children and suggest that G. duodenalis infection exerts a modulatory effect on the gut microbiome, promoting local inflammation and altering the equilibrium of the parasite-microbiota-host triad. This highlights the importance of considering polymicrobial associations and understanding the broader context of giardiasis. Overall, our study provides new insights into the complex interactions between intestinal parasites and the microbiota, which may have implications for the development of novel therapeutic interventions in the future.


Asunto(s)
Microbioma Gastrointestinal , Gastrópodos , Giardia lamblia , Giardiasis , Microbiota , Lactante , Animales , Humanos , Niño , Preescolar , Virus ADN , Giardia , Bacterias/genética , Inflamación
2.
Acta Trop ; 242: 106899, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36935050

RESUMEN

Extracellular vesicle (EVs) traffic is considered an important cellular communication process between cells that can be part of a single organism or belong to different living beings. The relevance of EV-mediated cellular communication is increasingly studied and appreciated, especially in relation to pathological conditions, including parasitic disorders, in which the EV release and uptake processes have been documented. In the context of Chagas Disease (CD), EVs have been explored, however, current data have not been systematically revised in order to provide an overview of the published literature and the main results obtained thus far. In this systematic review, 25 studies involving the investigation of EVs in CD were identified. The studies involved Trypanosoma cruzi -derived EVs (Tc-EVs), as well as EVs derived from T. cruzi-infected mammalian cells, mainly isolated by ultracentrifugation and poorly characterized. The objectives of the identified studies included the characterization of the protein and RNA cargo of Tc-EVs, as well as investigation of EVs in parasitic infections and immune-related processes. Overall, our systematic review reveals that EVs play critical roles in several mechanisms related to the interaction between T. cruzi and mammalian hosts, their contribution to immune system evasion by the parasite, and to chronic inflammation in the host. Future studies will benefit from the consolidation of isolation and characterization methods, as well as the elucidation of the role of EVs in CD.


Asunto(s)
Enfermedad de Chagas , Vesículas Extracelulares , Trypanosoma cruzi , Animales , Humanos , Enfermedad de Chagas/parasitología , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo , Transporte Biológico , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA