Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710582

RESUMEN

AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.


Asunto(s)
Acuicultura , Artemia , Bacteriófagos , Vibrio alginolyticus , Vibrio alginolyticus/virología , Animales , Artemia/microbiología , Artemia/virología , Alimentación Animal , Agua de Mar/microbiología , Larva/microbiología
2.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366951

RESUMEN

Sponges are abundant components of coral reefs known for their filtration capabilities and intricate interactions with microbes. They play a crucial role in maintaining the ecological balance of coral reefs. Humic substances (HS) affect bacterial communities across terrestrial, freshwater, and marine ecosystems. However, the specific effects of HS on sponge-associated microbial symbionts have largely been neglected. Here, we used a randomized-controlled microcosm setup to investigate the independent and interactive effects of HS, elevated temperature, and UVB radiation on bacterial communities associated with the sponge Chondrilla sp. Our results indicated the presence of a core bacterial community consisting of relatively abundant members, apparently resilient to the tested environmental perturbations, alongside a variable bacterial community. Elevated temperature positively affected the relative abundances of ASVs related to Planctomycetales and members of the families Pseudohongiellaceae and Hyphomonadaceae. HS increased the relative abundances of several ASVs potentially involved in recalcitrant organic matter degradation (e.g., the BD2-11 terrestrial group, Saccharimonadales, and SAR202 clade). There was no significant independent effect of UVB and there were no significant interactive effects of HS, heat, and UVB on bacterial diversity and composition. The significant, independent impact of HS on the composition of sponge bacterial communities suggests that alterations to HS inputs may have cascading effects on adjacent marine ecosystems.


Asunto(s)
Asteraceae , Isoquinolinas , Poríferos , Sulfonamidas , Humanos , Animales , Sustancias Húmicas , Ecosistema , Temperatura
3.
Antibiotics (Basel) ; 13(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38391581

RESUMEN

Urinary tract infections (UTIs) caused by resistant Klebsiella pneumoniae can lead to severe clinical complications and even death. An alternative treatment option for infected patients is using bacteriophages. In the present study, we isolated phage VB_KPM_KP1LMA (KP1LMA) from sewage water using a K. pneumoniae strain as a host. Whole-genome analysis indicated that the genome was a double-stranded linear 176,096-bp long DNA molecule with 41.8% GC content and did not contain virulence or antibiotic resistance genes. The inactivation potential of phage KP1LMA was assessed in broth at an MOI of 1 and 10, and a maximum inactivation of 4.9 and 5.4 log CFU/mL, respectively, was observed after 9 h. The efficacy at an MOI of 10 was also assessed in urine to evaluate the phage's performance in an acidic environment. A maximum inactivation of 3.8 log CFU/mL was observed after 9 h. The results suggest that phage KP1LMA could potentially control a UTI caused by this strain of K. pneumoniae, indicating that the same procedure can be used to control UTIs caused by other strains if new specific phages are isolated. Although phage KP1LMA has a narrow host range, in the future, efforts can be made to expand its spectrum of activity and also to combine this phage with others, potentially enabling its use against other K. pneumoniae strains involved in UTIs.

4.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37587019

RESUMEN

AIMS: We aim at understanding the effect of domestication on the endophytic microbiome and metabolome of Salicornia europaea and collecting evidence on the potential role of microbial populations and metabolites in the adaptation of plants to different ecological contexts (wild vs crops). METHODS AND RESULTS: Samples were collected from a natural salt marsh (wild) and an intensive crop field (crop). High-throughput sequencing of the 16S rRNA gene, gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze the endophytic bacterial communities and the metabolite profiles of S. europaea roots, respectively. The elemental analysis of the plant shoots was performed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).Overall, significant differences were found between the microbiome of wild and cultivated plants. The later showed a higher relative abundance of the genera Erythrobacter, Rhodomicrobium, and Ilumatobacter than wild plants. The microbiome of wild plants was enriched in Marinobacter, Marixanthomonas, and Thalassospira. The metabolite profile of crop plants revealed higher amounts of saturated and non-saturated fatty acids and acylglycerols. In contrast, wild plants contained comparatively more carbohydrates and most macroelements (i.e. Na, K, Mg, and Ca). CONCLUSIONS: There is a strong correlation between plant metabolites and the endosphere microbiome of S. europaea. In wild populations, plants were enriched in carbohydrates and the associated bacterial community was enriched in genes related to primary metabolic pathways such as nitrogen metabolism and carbon fixation. The endosphere microbiome of crop plants was predicted to have higher gene counts related to pathogenesis. Crop plants also exhibited higher amounts of azelaic acid, an indicator of exposure to phytopathogens.


Asunto(s)
Chenopodiaceae , Domesticación , Cromatografía Liquida , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Metaboloma
5.
Curr Microbiol ; 80(9): 294, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481620

RESUMEN

In the present study, we compared mucus and gut-associated prokaryotic communities from seven nudibranch species with sediment and seawater from Thai coral reefs using high-throughput 16S rRNA gene sequencing. The nudibranch species were identified as Doriprismatica atromarginata (family Chromodorididae), Jorunna funebris (family Discodorididae), Phyllidiella nigra, Phyllidiella pustulosa, Phyllidia carlsonhoffi, Phyllidia elegans, and Phyllidia picta (all family Phyllidiidae). The most abundant bacterial phyla in the dataset were Proteobacteria, Tenericutes, Chloroflexi, Thaumarchaeota, and Cyanobacteria. Mucus and gut-associated communities differed from one another and from sediment and seawater communities. Host phylogeny was, furthermore, a significant predictor of differences in mucus and gut-associated prokaryotic community composition. With respect to higher taxon abundance, the order Rhizobiales (Proteobacteria) was more abundant in Phyllidia species (mucus and gut), whereas the order Mycoplasmatales (Tenericutes) was more abundant in D. atromarginata and J. funebris. Mucus samples were, furthermore, associated with greater abundances of certain phyla including Chloroflexi, Poribacteria, and Gemmatimonadetes, taxa considered to be indicators for high microbial abundance (HMA) sponge species. Overall, our results indicated that nudibranch microbiomes consisted of a number of abundant prokaryotic members with high sequence similarities to organisms previously detected in sponges.


Asunto(s)
Chloroflexi , Gastrópodos , Microbiota , Animales , ARN Ribosómico 16S/genética , Células Procariotas , Proteobacteria , Moco , Microbiota/genética , Agua de Mar
6.
Microorganisms ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838485

RESUMEN

Live feed enrichments are often used in fish larvicultures as an optimized source of essential nutrients to improve larval growth and survival. In addition to this, they may also play an important role in structuring larval-associated microbial communities and may help improve their resistance to diseases. However, there is limited information available on how larval microbial communities and larviculture water are influenced by different live feed enrichments. In the present study, we investigated the effects of two commercial rotifer enrichments (ER) on turbot (Scophthalmus maximus) larval and post-larval gut-associated bacterial communities during larviculture production. We evaluated their effects on bacterial populations related to known pathogens and beneficial bacteria and their potential influence on the composition of bacterioplankton communities during larval rearing. High-throughput 16S rRNA gene sequencing was used to assess the effects of different rotifer enrichments (ER1 and ER2) on the structural diversity of bacterial communities of the whole turbot larvae 10 days after hatching (DAH), the post-larval gut 30 DAH, and the larviculture water. Our results showed that different rotifer feed enrichments were associated with significant differences in bacterial composition of turbot larvae 10 DAH, but not with the composition of larval gut communities 30 DAH or bacterioplankton communities 10 and 30 DAH. However, a more in-depth taxonomic analysis showed that there were significant differences in the abundance of Vibrionales in both 10 DAH larvae and in the 30 DAH post-larval gut fed different RE diets. Interestingly, the ER1 diet had a higher relative abundance of specific amplicon sequence variants (ASVs) related to potential Vibrio-antagonists belonging to the Roseobacter clade (e.g., Phaeobacter and Ruegeria at 10 DAH and Sulfitobacter at 30 DAH). In line with this, the diet was also associated with a lower relative abundance of Vibrio and a lower mortality. These results suggest that rotifer diets can affect colonization by Vibrio members in the guts of post-larval turbot. Overall, this study indicates that live feed enrichments can have modulatory effects on fish bacterial communities during the early stages of development, which includes the relative abundances of pathogenic and antagonist taxa in larviculture systems.

7.
Environ Microbiome ; 17(1): 57, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401317

RESUMEN

BACKGROUND: Metagenomics is an expanding field within microbial ecology, microbiology, and related disciplines. The number of metagenomes deposited in major public repositories such as Sequence Read Archive (SRA) and Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) is rising exponentially. However, data mining and interpretation can be challenging due to mis-annotated and misleading metadata entries. In this study, we describe the Marine Metagenome Metadata Database (MarineMetagenomeDB) to help researchers identify marine metagenomes of interest for re-analysis and meta-analysis. To this end, we have manually curated the associated metadata of several thousands of microbial metagenomes currently deposited at SRA and MG-RAST. RESULTS: In total, 125 terms were curated according to 17 different classes (e.g., biome, material, oceanic zone, geographic feature and oceanographic phenomena). Other standardized features include sample attributes (e.g., salinity, depth), sample location (e.g., latitude, longitude), and sequencing features (e.g., sequencing platform, sequence count). MarineMetagenomeDB version 1.0 contains 11,449 marine metagenomes from SRA and MG-RAST distributed across all oceans and several seas. Most samples were sequenced using Illumina sequencing technology (84.33%). More than 55% of the samples were collected from the Pacific and the Atlantic Oceans. About 40% of the samples had their biomes assigned as 'ocean'. The 'Quick Search' and 'Advanced Search' tabs allow users to use different filters to select samples of interest dynamically in the web app. The interactive map allows the visualization of samples based on their location on the world map. The web app is also equipped with a novel download tool (on both Windows and Linux operating systems), that allows easy download of raw sequence data of selected samples from their respective repositories. As a use case, we demonstrated how to use the MarineMetagenomeDB web app to select estuarine metagenomes for potential large-scale microbial biogeography studies. CONCLUSION: The MarineMetagenomeDB is a powerful resource for non-bioinformaticians to find marine metagenome samples with curated metadata and stimulate meta-studies involving marine microbiomes. Our user-friendly web app is publicly available at https://webapp.ufz.de/marmdb/ .

8.
Microbiol Res ; 265: 127183, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36108440

RESUMEN

Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.


Asunto(s)
Poríferos , Animales , Bacterias/genética , Genómica , Filogenia , Plásmidos/genética , Poríferos/microbiología
9.
Mol Ecol ; 31(19): 4932-4948, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881675

RESUMEN

Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.


Asunto(s)
Biodiversidad , Poríferos , Animales , Bacterias/genética , Clorofila , Humanos , Filogenia , Poríferos/genética , ARN Ribosómico 16S/genética , Agua de Mar
10.
Microbiol Resour Announc ; 11(6): e0015522, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35587780

RESUMEN

Here, we report on the draft genome sequence of Vibrio mediterranei strain CyArs1, isolated from the marine sponge Cinachyrella sp. Genome annotation revealed multiple genomic features, including eukaryotic-like repeat protein- and multidrug resistance-encoding genes, potentially involved in symbiotic relationships with the sponge host.

11.
Mar Drugs ; 21(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36662207

RESUMEN

Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.


Asunto(s)
Antozoos , Antiinfecciosos , Poríferos , Animales , Humanos , Metabolismo Secundario/genética , Bacterias/metabolismo , Poríferos/genética , Familia de Multigenes , Candida , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antozoos/genética , Filogenia
12.
Mol Ecol Resour ; 21(1): 110-121, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32866335

RESUMEN

Plasmid transfers among bacterial populations can directly influence the ecological adaptation of these populations and their interactions with host species and environment. In this study, we developed a selective multiply-primed rolling circle amplification (smRCA) approach to enrich and characterize circular plasmid DNA from sponge microbial symbionts via high-throughput sequencing (HTS). DNA (plasmid and total community DNA) obtained from sponge (Cinachyrella sp.) samples and a bacterial symbiont (Vibrio sp. CyArs1) isolated from the same sponge species (carrying unknown plasmids) were used to develop and validate our methodology. The smRCA was performed during 16 hr with 141 plasmid-specific primers covering all known circular plasmid groups. The amplified products were purified and subjected to a reamplification with random hexamer primers (2 hr) and then sequenced using Illumina MiSeq. The developed method resulted in the successful amplification and characterization of the sponge plasmidome and allowed us to detect plasmids associated with the bacterial symbiont Vibrio sp. CyArs1 in the sponge host. In addition to this, a large number of small (<2 kbp) and cryptic plasmids were also amplified in sponge samples. Functional analysis identified proteins involved in the control of plasmid partitioning, maintenance and replication. However, most plasmids contained unknown genes, which could potentially serve as a resource of unknown genetic information and novel replication systems. Overall, our results indicate that the smRCA-HTS approach developed here was able to selectively enrich and characterize plasmids from bacterial isolates and sponge host microbial communities, including plasmids larger than 20 kbp.


Asunto(s)
Bacterias/clasificación , ADN Circular , Técnicas de Amplificación de Ácido Nucleico , Plásmidos/genética , Poríferos/microbiología , Animales , Secuencia de Bases , Cartilla de ADN , ADN Bacteriano/genética , ADN Circular/genética
13.
Annu Rev Anim Biosci ; 9: 423-452, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33256435

RESUMEN

Aquaculture is the fastest-growing sector in food production worldwide. For decades, research on animal physiology, nutrition, and behavior established the foundations of best practices in land-based fish rearing and disease control. Current DNA sequencing, bioinformatics, and data science technologies now allow deep investigations of host-associated microbiomes in a tractable fashion. Adequate use of these technologies can illuminate microbiome dynamics and aid the engineering of microbiome-based solutions to disease prevention in an unprecedented manner. This review examines molecular studies of bacterial diversity, function, and host immunitymodulation at early stages of fish development, where microbial infections cause important economic losses. We uncover host colonization and virulence factors within a synthetic assemblage of fish pathogens using high-end comparative genomics and address the use of probiotics and paraprobiotics as applicable disease-prevention strategies in fish larval and juvenile rearing. We finally propose guidelines for future microbiome research of presumed relevance to fish larviculture.


Asunto(s)
Acuicultura/métodos , Enfermedades de los Peces/microbiología , Probióticos , Animales , Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Peces/crecimiento & desarrollo , Peces/microbiología , Larva/microbiología , Microbiota
14.
Artículo en Inglés | MEDLINE | ID: mdl-32156011

RESUMEN

Hydrocarbon bioremediation in anoxic sediment layers is still challenging not only because it involves metabolic pathways with lower energy yields but also because the production of biosurfactants that contribute to the dispersion of the pollutant is limited by oxygen availability. This work aims at screening populations of culturable hydrocarbonoclastic and biosurfactant (BSF) producing bacteria from deep sub-seafloor sediments (mud volcanos from Gulf of Cadiz) and estuarine sub-surface sediments (Ria de Aveiro) for strains with potential to operate in sub-oxic conditions. Isolates were retrieved from anaerobic selective cultures in which crude oil was provided as sole carbon source and different supplements were provided as electron acceptors. Twelve representative isolates were obtained from selective cultures with deep-sea and estuary sediments, six from each. These were identified by sequencing of 16S rRNA gene fragments belonging to Pseudomonas, Bacillus, Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera. BSF production by the isolates was tested by atomized oil assay, surface tension measurement and determination of the emulsification index. All isolates were able to produce BSFs under aerobic and anaerobic conditions, except for isolate DS27 which only produced BSF under aerobic conditions. These isolates presented potential to be applied in bioremediation or microbial enhanced oil recovery strategies under conditions of oxygen limitation. For the first time, members of Ochrobactrum, Brevundimonas, Psychrobacter, Staphylococcus, Marinobacter and Curtobacterium genera are described as anaerobic producers of BSFs.


Asunto(s)
Hidrocarburos , Petróleo , Tensoactivos , Contaminantes Químicos del Agua , Bacterias , Biodegradación Ambiental , Sedimentos Geológicos , ARN Ribosómico 16S
15.
Nat Commun ; 10(1): 1644, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967538

RESUMEN

Much recent marine microbial research has focused on sponges, but very little is known about how the sponge microbiome fits in the greater coral reef microbial metacommunity. Here, we present an extensive survey of the prokaryote communities of a wide range of biotopes from Indo-Pacific coral reef environments. We find a large variation in operational taxonomic unit (OTU) richness, with algae, chitons, stony corals and sea cucumbers housing the most diverse prokaryote communities. These biotopes share a higher percentage and number of OTUs with sediment and are particularly enriched in members of the phylum Planctomycetes. Despite having lower OTU richness, sponges share the greatest percentage (>90%) of OTUs with >100 sequences with the environment (sediment and/or seawater) although there is considerable variation among sponge species. Our results, furthermore, highlight that prokaryote microorganisms are shared among multiple coral reef biotopes, and that, although compositionally distinct, the sponge prokaryote community does not appear to be as sponge-specific as previously thought.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Bacterias/aislamiento & purificación , Arrecifes de Coral , Microbiota , Poríferos/microbiología , Animales , Organismos Acuáticos/genética , Bacterias/genética , ADN Bacteriano/aislamiento & purificación , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Taiwán , Tailandia
16.
PLoS One ; 14(1): e0211209, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682196

RESUMEN

There is a growing consensus that future technological developments of aquaculture systems should account for the structure and function of microbial communities in the whole system and not only in fish guts. In this study, we aimed to investigate the composition of bacterioplankton communities of a hatchery recirculating aquaculture system (RAS) used for the production of Senegalese sole (Solea senegalensis) juveniles. To this end, we used a 16S rRNA gene based denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses to characterize the bacterioplankton communities of the RAS and its water supply. Overall, the most abundant orders were Alteromonadales, Rhodobacterales, Oceanospirillales, Vibrionales, Flavobacteriales, Lactobacillales, Thiotrichales, Burkholderiales and Bdellovibrionales. Although we found a clear distinction between the RAS and the water supply bacterioplankton communities, most of the abundant OTUs (≥50 sequences) in the hatchery RAS were also present in the water supply. These included OTUs related to Pseudoalteromonas genus and the Roseobacter clade, which are known to comprise bacterial members with activity against Vibrio fish pathogens. Overall, in contrast to previous findings for sole grow-out RAS, our results suggest that the water supply may influence the bacterioplankton community structure of sole hatchery RAS. Further studies are needed to investigate the effect of aquaculture practices on RAS bacterioplankton communities and identification of the key drivers of their structure and diversity.


Asunto(s)
Bacterias/clasificación , Peces Planos/crecimiento & desarrollo , Plancton/microbiología , ARN Ribosómico 16S/genética , Animales , Acuicultura , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , Filogenia , Análisis de Secuencia de ADN , Agua/química , Microbiología del Agua
17.
Braz. j. microbiol ; 49(4): 757-769, Oct.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-974306

RESUMEN

ABSTRACT Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Avicennia/microbiología , Hidrocarburos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , Petróleo/análisis , ARN Ribosómico 16S/genética , Contaminación por Petróleo/análisis , Avicennia/metabolismo , Rizosfera
18.
Environ Sci Pollut Res Int ; 25(32): 32756-32766, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30244446

RESUMEN

Ocean acidification may exacerbate the environmental impact of oil hydrocarbon pollution by disrupting the core composition of the superficial (0-1 cm) benthic bacterial communities. However, at the subsurface sediments (approximately 5 cm below sea floor), the local biochemical characteristics and the superjacent sediment barrier may buffer these environmental changes. In this study, we used a microcosm experimental approach to access the independent and interactive effects of reduced seawater pH and oil contamination on the composition of subsurface benthic bacterial communities, at two time points, by 16S rRNA gene-based high-throughput sequencing. An in-depth taxa-specific variance analysis revealed that the independent effects of reduced seawater pH and oil contamination were significant predictors of changes in the relative abundance of some specific bacterial groups (e.g., Firmicutes, Rhizobiales, and Desulfobulbaceae). However, our results indicated that the overall microbial community structure was not affected by independent and interactive effects of reduced pH and oil contamination. This study provides evidence that bacterial communities inhabiting subsurface sediment may be less susceptible to the effects of oil contamination in a scenario of reduced seawater pH.


Asunto(s)
Sedimentos Geológicos/química , Hidrocarburos/toxicidad , Agua de Mar/química , Contaminantes del Agua/toxicidad , Bacterias/genética , Sedimentos Geológicos/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Hidrocarburos/análisis , Microbiota , Contaminación por Petróleo/análisis , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
19.
Braz J Microbiol ; 49(4): 757-769, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29866608

RESUMEN

Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.


Asunto(s)
Avicennia/microbiología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Hidrocarburos/metabolismo , Avicennia/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , Petróleo/análisis , Contaminación por Petróleo/análisis , Plásmidos/genética , Plásmidos/metabolismo , ARN Ribosómico 16S/genética , Rizosfera , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
20.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29069352

RESUMEN

Microbial communities inhabiting gorgonian corals are believed to benefit their hosts through nutrient provision and chemical defence; yet much remains to be learned about their phylogenetic uniqueness and cultivability. Here, we determined the prokaryotic community structure and distinctiveness in the gorgonian Eunicella labiata by Illumina sequencing of 16S rRNA genes from gorgonian and seawater metagenomic DNA. Furthermore, we used a 'plate-wash' methodology to compare the phylogenetic diversity of the 'total' gorgonian bacteriome and its 'cultivatable' fraction. With 1016 operational taxonomic units (OTUs), prokaryotic richness was higher in seawater than in E. labiata where 603 OTUs were detected, 68 of which were host-specific. Oceanospirillales and Rhodobacterales predominated in the E. labiata communities. One Oceanospirillales OTU, classified as Endozoicomonas, was particularly dominant, and closest relatives comprised exclusively uncultured clones from other gorgonians. We cultivated a remarkable 62% of the bacterial symbionts inhabiting E. labiata: Ruegeria, Sphingorhabdus, Labrenzia, other unclassified Rhodobacteraceae, Vibrio and Shewanella ranked among the 10 most abundant genera in both the cultivation-independent and dependent samples. In conclusion, the E. labiata microbiome is diverse, distinct from seawater and enriched in (gorgonian)-specific bacterial phylotypes. In contrast to current understanding, many dominant E. labiata symbionts can, indeed, be cultivated.


Asunto(s)
Antozoos/microbiología , Bacterias/clasificación , Microbiota , Animales , Bacterias/genética , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA