Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 28(5): 115, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35391628

RESUMEN

Surface hydroxylation has been extensively studied over the years for a variety of applications, and studies involving hydroxylation of different silica surfaces are still carried out due to the interesting properties obtained from those modified surfaces. Although a number of theoretical studies have been employed to evaluate details on the hydroxylation phenomenon on silica (SiO2) surfaces, most of these studies are based on computationally expensive models commonly based on extended systems. In order to circumvent such an aspect, here we present a low-cost theoretical study on the SiO2 hydroxylation process aiming to evaluate aspects associated with water-SiO2 interaction. Details about local reactivity, chemical softness, and electrostatic potential were evaluated for SiO2 model substrates in the framework of the density functional theory (DFT) using a molecular approach. The obtained results from this new and promising approach were validated and complemented by fully atomistic reactive molecular dynamics (FARMD) simulations. Furthermore, the implemented approach proves to be a powerful tool that is not restricted to the study of hydroxylation, opening a promising route for low computational cost to analyze passivation and anchoring processes on a variety of oxide surfaces.


Asunto(s)
Simulación de Dinámica Molecular , Dióxido de Silicio , Hidroxilación , Dióxido de Silicio/química , Electricidad Estática , Agua/química
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111438, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33255031

RESUMEN

Photofunctionalization mediated by ultraviolet (UV) light seems to be a promising approach to improve the physico-chemical characteristics and the biological response of titanium (Ti) dental implants. Seeing that photofunctionalization is able to remove carbon from the surface, besides to promote reactions on the titanium dioxide (TiO2) layer, coating the Ti with a stable TiO2 film could potentialize the UV effect. Thus, here we determined the impact of UV-photofunctionalized mixed-phase (anatase and rutile) TiO2 films on the physico-chemical properties of Ti substrate and cell biology. Mixed-phase TiO2 films were grown by radiofrequency magnetron sputtering on commercially pure titanium (cpTi) discs, and samples were divided as follow: cpTi (negative control), TiO2 (positive control), cpTi UV, TiO2 UV (experimental). Photofunctionalization was performed using UVA (360 nm - 40 W) and UVC (250 nm - 40 W) lamps for 48 h. Surfaces were analyzed in terms of morphology, topography, chemical composition, crystalline phase, wettability and surface free energy. Pre-osteoblastic cells (MC3T3E1) were used to assess cell morphology and adhesion, metabolism, mineralization potential and cytokine secretion (IFN-γ, TNF-α, IL-4, IL-6 and IL-17). TiO2-coated surfaces exhibited granular surface morphology and greater roughness. Photofunctionalization increased wettability (p < 0.05) and surface free energy (p < 0.001) on both surface conditions. TiO2-treated groups featured normal cell morphology and spreading, and greater cellular metabolic activity at 2 and 4 days (p < 0.05), whereas UV-photofunctionalized surfaces enhanced cell metabolism, cell adhered area, and calcium deposition (day 14) (p < 0.05). In general, assessed proteins were found slightly affected by either UV or TiO2 treatments. Altogether, our findings suggest that UV-photofunctionalized TiO2 surface has the potential to improve pre-osteoblastic cell differentiation and the ability of cells to form mineral nodules by modifying Ti physico-chemical properties towards a more stable context. UV-modified surfaces modulate the secretion of key inflammatory markers.


Asunto(s)
Citocinas , Osteoblastos , Células 3T3-L1 , Animales , Comunicación Celular , Ratones , Propiedades de Superficie , Titanio/farmacología , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...