Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 113(48): 13630-13635, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27849598

RESUMEN

Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Sulfatos/efectos adversos , Aerosoles/análisis , Contaminación del Aire/análisis , China , Clima , Monitoreo del Ambiente/métodos , Humanos , Londres , Nitratos , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/química , Óxidos de Nitrógeno/análisis , Tamaño de la Partícula , Material Particulado/efectos adversos , Sulfatos/análisis , Óxidos de Azufre/análisis , Tiempo (Meteorología)
2.
J Phys Chem A ; 119(19): 4457-63, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25369518

RESUMEN

The heterogeneous chemistry of glyoxal on sulfuric acid surfaces has been investigated at various acid concentrations and temperatures, utilizing a low-pressure fast flow laminar reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS). The uptake coefficient (γ) of glyoxal ranges from (1.2 ± 0.06) × 10(-2) to (2.5 ± 0.01) × 10(-3) for 60-93 wt % H2SO4 at 253-273 K. The effective Henry's Law constant (H*) ranges from (98.9 ± 4.9) × 10(5) to (1.6 ± 0.1) × 10(5) M atm(-1) for 60-93 wt % at 263-273 K. Both the uptake coefficient and Henry's Law constant increase with decreasing acid concentration and temperature. Our results reveal a reaction mechanism of hydration followed by oligomerization for glyoxal on acidic media, indicating an efficient aqueous reaction of glyoxal on hygroscopic particles leading to secondary organic aerosol formation.


Asunto(s)
Aerosoles/química , Glioxal/química , Ácidos Sulfúricos/química , Espectrometría de Masas , Presión , Soluciones , Temperatura , Factores de Tiempo , Agua/química , Humectabilidad
3.
Langmuir ; 26(8): 6066-70, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20302283

RESUMEN

A "strategy" for analyte capture/ionization based on chemical derivatization of gold nanorods and infrared laser desorption ionization (IR-LDI) is described. This is the first example of laser desorption/ionization of biomolecules using gold nanorods irradiated with an IR laser. LDI is performed at wavelengths (1064 nm) that overlap with the longitudinal surface plasmon resonance (LSPR) mode of gold nanorods. The absorbed energy from the laser facilitates desorption and ionization of the analyte. The wavelength of the LSPR band can be tuned by controlling the aspect ratio (length-to-diameter) of the nanorod. For example, the SPR band for Au nanorods having an aspect ratio of 5:1 is centered at approximately 840 nm, and this band overlaps with the 1064 nm output of a Nd:YAG laser. We show that a variety of biomolecules can be efficiently desorbed and ionized by 1064 nm irradiation of nanorods. We also show that analyte capture can be controlled by surface chemistry of the nanorods. The results of these studies are important for designing nanomaterial-based capture assays for mass spectrometry and interfacing nanomaterials with imaging/spatial profiling mass spectrometry experiments.


Asunto(s)
Técnicas Biosensibles/métodos , Oro/química , Espectrometría de Masas/métodos , Resonancia por Plasmón de Superficie/métodos , Nanopartículas del Metal/química , Modelos Teóricos , Nanotubos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...