Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunooncol Technol ; 15: 100089, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35865122

RESUMEN

Background: Adoptive cell therapy with peripheral blood T cells expressing transgenic T-cell receptors (TCRs) is an innovative therapeutic approach for solid malignancies. We investigated the safety and feasibility of adoptive transfer of autologous T cells expressing melanoma antigen recognized by T cells 1 (MART-1)-specific TCR, cultured to have less differentiated phenotypes, in patients with metastatic melanoma. Materials and methods: In this phase I/IIa trial, peripheral blood T cells from HLA-A2∗02:01-positive patients with unresectable stage IIIC/IV melanoma expressing MART-1 were selected and stimulated with anti-CD3/CD28 beads, transduced with a modified MART-1(26-35)-specific 1D3 TCR (1D3HMCys) and expanded in interleukin (IL)-7 and IL-15. Patients received a single infusion of transgenic T cells in a dose-escalating manner. Feasibility, safety and objective response rate were assessed. Results: Twelve pretreated metastatic cutaneous (n = 7) and uveal (n = 5) melanoma patients were included. Patient 1 received 4.6 × 109 1D3HMCys T cells and experienced grade 5 toxicity after 9 days. Subsequent patients received 5.0 × 107 [n = 3; cohort (c) 2], 2.5 × 108 (n = 2; c3) and 1.0 × 108 (n = 6; c4) 1D3HMCys T cells. The study was prematurely terminated because of dose-dependent toxicity, concerning skin (10/12), eyes (3/12), ears (4/12) and cytokine release syndrome (5/12), with 7 patients experiencing grade 3-5 toxicity. Partial responses were seen in 2/11 (18%) assessable patients and persistence of 1D3HMCys T cells corresponded to infused cell dose. Conclusions: Production of TCR-modified cells as described leads to highly potent T cells. Partial responses were seen in 18% of patients with dose-dependent 'on-target, off-tumor' toxicity and a maximum tolerated dose of 1.0 × 108 cells.

2.
Vaccine ; 31(32): 3274-80, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23707695

RESUMEN

We report an unexpected contamination during clinical manufacture of a Human Papilomavirus (HPV) 16 E6 encoding plasmid DNA (pDNA) vaccine, with a transposon originating from the Escherichia coli DH5 host cell genome. During processing, presence of this transposable element, insertion sequence 2 (IS2) in the plasmid vector was not noticed until quality control of the bulk pDNA vaccine when results of restriction digestion, sequencing, and CGE analysis were clearly indicative for the presence of a contaminant. Due to the very low level of contamination, only an insert-specific PCR method was capable of tracing back the presence of the transposon in the source pDNA and master cell bank (MCB). Based on the presence of an uncontrolled contamination with unknown clinical relevance, the product was rejected for clinical use. In order to prevent costly rejection of clinical material, both in-process controls and quality control methods must be sensitive enough to detect such a contamination as early as possible, i.e. preferably during plasmid DNA source generation, MCB production and ultimately during upstream processing. However, as we have shown that contamination early in the process development pipeline (source pDNA, MCB) can be present below limits of detection of generally applied analytical methods, the introduction of "engineered" or transposon-free host cells seems the only 100% effective solution to avoid contamination with movable elements and should be considered when searching for a suitable host cell-vector combination.


Asunto(s)
Elementos Transponibles de ADN , Contaminación de Medicamentos , Escherichia coli/genética , Vacunas contra Papillomavirus/biosíntesis , Vacunas de ADN/biosíntesis , ADN Bacteriano/química , Fermentación , Vectores Genéticos , Límite de Detección , Proteínas Oncogénicas Virales/genética , Vacunas contra Papillomavirus/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Control de Calidad , Proteínas Represoras/genética , Mapeo Restrictivo , Análisis de Secuencia de ADN , Vacunas de ADN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...