Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 19(2): 426-439, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35535798

RESUMEN

Within the thymus, thymic epithelial cells (TECs) provide dedicated thymic stroma microenvironments for T cell development. Because TEC functionality is sensitive to aging and cytoablative therapies, unraveling the molecular elements that coordinate their thymopoietic role has fundamental and clinical implications. Particularly, the selection of CD4 T cells depends on interactions between TCRs expressed on T cell precursors and self-peptides:MHC II complexes presented by cortical TECs (cTECs). Although the macroautophagy/autophagy-lysosomal protein degradation pathway is implicated in CD4 T cell selection, the molecular mechanism that controls the generation of selecting MHC II ligands remains elusive. LAMP2 (lysosomal-associated membrane protein 2) is a well-recognized mediator of autolysosome (AL) maturation. We showed that LAMP2 is highly expressed in cTECs. Notably, genetic inactivation of Lamp2 in thymic stromal cells specifically impaired the development of CD4 T cells that completed positive selection, without misdirecting MHC II-restricted cells into the CD8 lineage. Mechanistically, defects in autophagy in lamp2-deficient cTECs were linked to alterations in MHC II processing, which was associated with a marked reduction in CD4 TCR repertoire diversity selected within the lamp2-deficient thymic stroma. Together, our findings suggest that LAMP2 interconnects the autophagy-lysosomal axis and the processing of selecting self-peptides:MHC II complexes in cTECs, underling its implications for the generation of a broad CD4 TCR repertoire.Abbreviations: AIRE: autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dystrophy); AL: autolysosome; AP: autophagosome; Baf-A1: bafilomycin A1; B2M: beta-2 microglobulin; CTSL: cathepsin L; CD74/Ii: CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated); CFSE: carboxyfluorescein succinimidyl ester; CFU: colony-forming unit; CLIP: class II-associated invariant chain peptides; cTECs: cortical TECs dKO: double knockout; DN: double negative; DP: double positive; ENPEP/LY51: glutamyl aminopeptidase; FOXP3: forkhead box; P3 IFNG/IFNγ: interferon gamma; IKZF2/HELIOS: IKAROS family zinc finger 2; IL2RA/CD25: interleukin 2 receptor, alpha chain; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; LIP: lymphopenia-induced proliferation; Lm: Listeria monocytogenes; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MHC: major histocompatibility complex; mTECs: medullary TECs; PRSS16/TSSP: protease, serine 16 (thymus); SELL/CD62L: selectin, lymphocyte; SP: single positive; TCR: T cell receptor; TCRB: T cell receptor beta chain; TECs: thymic epithelial cells; UEA-1: Ulex europaeus agglutinin-1; WT: wild-type.


Asunto(s)
Autofagia , Linfocitos T CD4-Positivos , Animales , Ratones , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Autofagia/genética , Timo/metabolismo , Epitelio/metabolismo , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Células Epiteliales/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Péptidos/metabolismo , Ratones Endogámicos C57BL
2.
Biomedicines ; 12(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38255142

RESUMEN

Considering the conflicting evidence regarding the potential long-term detrimental effect of swimming during growth on femur quality and fracture risk, our aim was to investigate the effect of eight months of swimming on femur quality. Twenty male eight-week-old Wistar rats were assigned into a swimming (SW; n = 10; 2 h/day, 5 days/week) or active control group (CG; n = 10, housed with running wheel) for eight months. Plasma osteocalcin and C-terminal telopeptide of type I collagen concentrations (ELISA) were assessed at baseline, four, and eight months of protocol. Femur structure (micro-computed tomography), biomechanical properties (three-point bending), and cellular density (histology) were determined after the protocol. SW displayed a lower uncoupling index, suggesting higher bone resorption, lower empty lacunae density, cortical and trabecular femur mass, femur length and cortical thickness, and higher cortical porosity than CG (p < 0.05). Although both biomarkers' concentrations decreased in both groups throughout the experiment (p < 0.001), there were no significant differences between groups (p > 0.05). No differences were also found regarding biomechanical properties, bone marrow adiposity, and osteocyte and osteoclast densities (p > 0.05). Long-term swimming was associated with unbalanced bone turnover and compromised femur growth, lower femur mass, and deteriorated cortical bone microarchitecture. However, femur trabecular microarchitecture and biomechanical properties were not affected by swimming.

3.
Sci Rep ; 12(1): 17471, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261475

RESUMEN

Characterization of brain infarct lesions in rodent models of stroke is crucial to assess stroke pathophysiology and therapy outcome. Until recently, the analysis of brain lesions was performed using two techniques: (1) histological methods, such as TTC (Triphenyltetrazolium chloride), a time-consuming and inaccurate process; or (2) MRI imaging, a faster, 3D imaging method, that comes at a high cost. In the last decade, high-resolution micro-CT for 3D sample analysis turned into a simple, fast, and cheaper solution. Here, we successfully describe the application of brain contrasting agents (Osmium tetroxide and inorganic iodine) for high-resolution micro-CT imaging for fine location and quantification of ischemic lesion and edema in mouse preclinical stroke models. We used the intraluminal transient MCAO (Middle Cerebral Artery Occlusion) mouse stroke model to identify and quantify ischemic lesion and edema, and segment core and penumbra regions at different time points after ischemia, by manual and automatic methods. In the transient-ischemic-attack (TIA) mouse model, we can quantify striatal myelinated fibers degeneration. Of note, whole brain 3D reconstructions allow brain atlas co-registration, to identify the affected brain areas, and correlate them with functional impairment. This methodology proves to be a breakthrough in the field, by providing a precise and detailed assessment of stroke outcomes in preclinical animal studies.


Asunto(s)
Yodo , Accidente Cerebrovascular , Animales , Ratones , Tetróxido de Osmio , Microtomografía por Rayos X , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/patología , Modelos Animales de Enfermedad
4.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685047

RESUMEN

Nanoparticle drug delivery vehicles introduce multiple pharmacokinetic processes, with the delivery, accumulation, and stability of the therapeutic molecule influenced by nanoscale processes. Therefore, considering the complexity of the multiple interactions, the use of data-driven models has critical importance in understanding the interplay between controlling processes. We demonstrate data simulation techniques to reproduce the time-dependent dose of trimethyl chitosan nanoparticles in an ND7/23 neuronal cell line, used as an in vitro model of native peripheral sensory neurons. Derived analytical expressions of the mean dose per cell accurately capture the pharmacokinetics by including a declining delivery rate and an intracellular particle degradation process. Comparison with experiment indicates a supply time constant, τ = 2 h. and a degradation rate constant, b = 0.71 h-1. Modeling the dose heterogeneity uses simulated data distributions, with time dependence incorporated by transforming data-bin values. The simulations mimic the dynamic nature of cell-to-cell dose variation and explain the observed trend of increasing numbers of high-dose cells at early time points, followed by a shift in distribution peak to lower dose between 4 to 8 h and a static dose profile beyond 8 h.

5.
Antioxidants (Basel) ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356328

RESUMEN

Parkinson's disease's etiology is unknown, although evidence suggests the involvement of oxidative modifications of intracellular components in disease pathobiology. Despite the known involvement of the extracellular matrix in physiology and disease, the influence of oxidative stress on the matrix has been neglected. The chemical modifications that might accumulate in matrix components due to their long half-live and the low amount of extracellular antioxidants could also contribute to the disease and explain ineffective cellular therapies. The enriched striatal extracellular matrix from a mouse model of Parkinson's disease was characterized by Raman spectroscopy. We found a matrix fingerprint of increased oxalate content and oxidative modifications. To uncover the effects of these changes on brain cells, we morphologically characterized the primary microglia used to repopulate this matrix and further quantified the effects on cellular mechanical stress by an intracellular fluorescence resonance energy transfer (FRET)-mechanosensor using the U-2 OS cell line. Our data suggest changes in microglia survival and morphology, and a decrease in cytoskeletal tension in response to the modified matrix from both hemispheres of 6-hydroxydopamine (6-OHDA)-lesioned animals. Collectively, these data suggest that the extracellular matrix is modified, and underscore the need for its thorough investigation, which may reveal new ways to improve therapies or may even reveal new therapies.

6.
Eur J Neurosci ; 53(12): 4016-4033, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34013613

RESUMEN

Alzheimer's, Parkinson's, and Huntington's diseases are characterized by selective degeneration of specific brain areas. Although increasing number of studies report alteration of the extracellular matrix on these diseases, an exhaustive characterization at the brain's matrix level might contribute to the development of more efficient cell restoration therapies. In that regard, proteomics-based studies are a powerful approach to uncover matrix changes. However, to date, the majority of proteomics studies report no or only a few brain matrix proteins with altered expression. This study aims to reveal the changes in the brain extracellular matrix by integrating several proteomics-based studies performed with postmortem tissue. In total, 67 matrix proteins with altered expression were collected. By applying a bioinformatic approach, we were able to reveal the dysregulated biological processes. Among them are processes related to the organization of the extracellular matrix, glycosaminoglycans and proteoglycans' metabolism, blood coagulation, and response to injury and oxidative stress. In addition, a protein was found altered in all three diseases-collagen type I alpha 2-and its binding partners further identified. A ClueGO network was created, depicting the GO groups associated with these binding partners, uncovering the processes that may consequently be affected. These include cellular adhesion, cell signaling through membrane receptors, inflammatory processes, and apoptotic cell death in response to oxidative stress. Overall, we were able to associate the contribution of the modification of extracellular matrix components to essential biological processes, highlighting the investment needed on proteomics studies with specific focus on the extracellular matrix in neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Proteoma , Encéfalo/metabolismo , Biología Computacional , Matriz Extracelular/metabolismo , Humanos , Proteoma/metabolismo
7.
ACS Med Chem Lett ; 11(8): 1521-1528, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832018

RESUMEN

Fluorescence labeled ligands have been gaining importance as molecular tools, enabling receptor-ligand-binding studies by various fluorescence-based techniques. Aiming at red-emitting fluorescent ligands for the hH2R, a series of squaramides labeled with pyridinium or cyanine fluorophores (19-27) was synthesized and characterized. The highest hH2R affinities in radioligand competition binding assays were obtained in the case of pyridinium labeled antagonists 19-21 (pK i: 7.71-7.76) and cyanine labeled antagonists 23 and 25 (pK i: 7.67, 7.11). These fluorescent ligands proved to be useful tools for binding studies (saturation and competition binding as well as kinetic experiments), using confocal microscopy, flow cytometry, and high content imaging. Saturation binding experiments revealed pK d values comparable to the pK i values. The fluorescent probes 21, 23, and 25 could be used to localize H2 receptors in HEK cells and to determine the binding affinities of unlabeled compounds.

8.
Cells ; 9(2)2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102381

RESUMEN

Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell-cell and cell-matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori-host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.


Asunto(s)
Efrina-A2/metabolismo , Mucosa Gástrica/patología , Helicobacter pylori/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Estómago/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Mucosa Gástrica/enzimología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Humanos , Receptor EphA2 , Estómago/enzimología , Estómago/microbiología
9.
FASEB J ; 34(3): 4163-4177, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31960508

RESUMEN

Genetic and pharmacological functional studies have provided evidence that the lack of Neuropeptide Y-Y1  receptor (Y1 R) signaling pathway induces a high bone mass phenotype in mice. However, clinical observations have shown that drug or genetic mediated improvement of bone mass might be associated to alterations to bone extracellular matrix (ECM) properties, leading to bone fragility. Hence, in this study we propose to characterize the physical, chemical and biomechanical properties of mature bone ECM of germline NPY-Y1 R knockout (Y1 R-/- ) mice, and compare to their wild-type (WT) littermates. Our results demonstrated that the high bone mass phenotype observed in Y1 R-/- mice involves alterations in Y1 R-/-  bone ECM ultrastructure, as a result of accelerated deposition of organic and mineral fractions. In addition, Y1 R-/- bone ECM displays enhanced matrix maturation characterized by greater number of mature/highly packed collagen fibers without pathological accumulation of immature/mature collagen crosslinks nor compromise of mineral crystallinity. These unique features of Y1 R-/-  bone ECM improved the biochemical properties of Y1 R-/-  bones, reflected by mechanically robust bones with diminished propensity to fracture, contributing to greater bone strength. These findings support the future usage of drugs targeting Y1 R signaling as a promising therapeutic strategy to treat bone loss-related pathologies.


Asunto(s)
Matriz Ósea/metabolismo , Receptores de Neuropéptido Y/metabolismo , Animales , Peso Corporal/genética , Peso Corporal/fisiología , Ensayo de Inmunoadsorción Enzimática , Masculino , Pruebas Mecánicas , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Receptores de Neuropéptido Y/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Espectrometría Raman , Microtomografía por Rayos X
10.
Eur J Pharm Biopharm ; 127: 378-386, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29524597

RESUMEN

Helicobacter pylori infection is one of the major risk factors for gastric cancer development. Available antibiotic-based treatments not only fail in around 20% of patients but also have a severe negative impact on the gut microbiota. Recently, we demonstrated that nanostructured lipid carriers (NLC), even without any drug loaded, are bactericidal against H. pylori at low concentrations. This work aims to clarify NLC mode of action and to evaluate if their bactericidal effect is specific to H. pylori without affecting bacteria from microbiota. NLC were produced by hot homogenization followed by ultrasonication method, using Precirol®ATO5 and Miglyol®812 as lipids and Tween®60 as a surfactant. NLC were able to eradicate H. pylori without affecting the other tested bacteria (Lactobacillus, E. coli, S. epidermidis and S. aureus). Bioimaging assays demonstrated that NLC rapidly bind to and cross the H. pylori bacterial membrane, destabilizing and disrupting it, which leads to leakage of the cytoplasmic contents and consequent bacterial death. In an era where efficient alternatives to antibiotics are urgent, NLC are an interesting route to be explored in the quest for new antibiotic-free therapies to fight H. pylori infection.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/química , Microbioma Gastrointestinal/efectos de los fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Lípidos/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Bacterias/efectos de los fármacos , Portadores de Fármacos/química , Helicobacter pylori/efectos de los fármacos , Humanos , Microbiota/efectos de los fármacos , Nanoestructuras/química , Tamaño de la Partícula , Tensoactivos/química
11.
Spine (Phila Pa 1976) ; 43(12): E673-E682, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29189572

RESUMEN

STUDY DESIGN: Ex vivo experimental study. OBJECTIVE: To investigate the effect of proinflammatory/degenerative intervertebral disc (IVD) microenvironment on the regenerative and immunomodulatory behavior of mesenchymal stem/stromal cells (MSCs), using an ex vivo model from bovine origin. SUMMARY OF BACKGROUND DATA: Low back pain is a cause of disability worldwide, most frequently associated with IVD degeneration and inflammation, and characterized by increased levels of inflammatory mediators, often disregarded. MSC-based therapies to low back pain have been advocated, but the involvement of inflammation in IVD remodeling mechanism, promoted by MSCs has not yet been explored. METHODS: Bovine IVD organ cultures of nucleus pulposus punches were stimulated with needle puncture and culture medium supplementation with 10 ng/mL of interleukin (IL)-1ß, to induce a proinflammatory/degenerative environment, as previously established. Human bone marrow-derived MSCs were cultured on top of transwells, placed above nucleus pulposus punches, for up to 16 days. MSCs were analyzed by screening cell viability/apoptosis, metabolic activity, migration, and inflammatory cytokines production in response to the proinflammatory environment. IVD extracellular matrix (ECM) remodeling, gene expression profile of IVD cells, and inflammatory cytokine profile in the presence of MSCs in basal versus proinflammatory conditions were also evaluated. RESULTS: Proinflammatory/degenerative IVD conditions did not affect MSCs viability, but promoted cell migration, while increasing IL-6, IL-8, monocyte chemoattractant protein-1, and prostaglandin E2 and reducing transforming growth factor-ß1 production by MSCs. MSCs did not stimulate ECM production (namely type II collagen or aggrecan) in neither basal nor inflammatory conditions, instead MSCs downregulated bovine proinflammatory IL-6, IL-8, and TNF-α gene expression levels in IL-1ß-stimulated IVDs. CONCLUSION: The present study provides evidence for an immunomodulatory paracrine effect of MSCs in degenerated IVD without an apparent effect in ECM remodeling, and suggest an MSCs mechanism-of-action dependent on a cytokine feedback loop. LEVEL OF EVIDENCE: 5.


Asunto(s)
Citocinas/metabolismo , Inflamación/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Disco Intervertebral/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Bovinos , Humanos , Núcleo Pulposo/metabolismo
12.
Antioxidants (Basel) ; 7(1)2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29267236

RESUMEN

It has long been accepted that mitochondrial function and morphology is affected in Parkinson's disease, and that mitochondrial function can be directly related to its morphology. So far, mitochondrial morphological alterations studies, in the context of this neurodegenerative disease, have been performed through microscopic methodologies. The goal of the present work is to address if the modifications in the mitochondrial-shaping proteins occurring in this disorder have implications in other cellular pathways, which might constitute important pathways for the disease progression. To do so, we conducted a novel approach through a thorough exploration of the available proteomics-based studies in the context of Parkinson's disease. The analysis provided insight into the altered biological pathways affected by changes in the expression of mitochondrial-shaping proteins via different bioinformatic tools. Unexpectedly, we observed that the mitochondrial-shaping proteins altered in the context of Parkinson's disease are, in the vast majority, related to the organization of the mitochondrial cristae. Conversely, in the studies that have resorted to microscopy-based techniques, the most widely reported alteration in the context of this disorder is mitochondria fragmentation. Cristae membrane organization is pivotal for mitochondrial ATP production, and changes in their morphology have a direct impact on the organization and function of the oxidative phosphorylation (OXPHOS) complexes. To understand which biological processes are affected by the alteration of these proteins we analyzed the binding partners of the mitochondrial-shaping proteins that were found altered in Parkinson's disease. We showed that the binding partners fall into seven different cellular components, which include mitochondria, proteasome, and endoplasmic reticulum (ER), amongst others. It is noteworthy that, by evaluating the biological process in which these modified proteins are involved, we showed that they are related to the production and metabolism of ATP, immune response, cytoskeleton alteration, and oxidative stress, amongst others. In summary, with our bioinformatics approach using the data on the modified proteins in Parkinson's disease patients, we were able to relate the alteration of mitochondrial-shaping proteins to modifications of crucial cellular pathways affected in this disease.

13.
Front Microbiol ; 8: 1883, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021786

RESUMEN

Helicobacter pylori is a pathogen involved in gastric diseases such as ulcers and carcinomas. H. pylori's urease is an important virulence factor produced in large amounts by this bacterium. In previous studies, we have shown that this protein is able to activate several cell types like neutrophils, monocytes, platelets, endothelial cells, and gastric epithelial cells. Angiogenesis is a physiological process implicated in growth, invasion and metastization of tumors. Here, we have analyzed the angiogenic potential of H. pylori urease (HPU) in gastric epithelial cells. No cytotoxicity was observed in AGS, Kato-III, and MKN28 gastric cell lines treated with 300 nM HPU, as evaluated by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. As we previously reported in neutrophils, treatment with 300 nM HPU also had an anti-apoptotic effect in gastric epithelial cells leading to a 2.2-fold increase in the levels of Bcl-XL after 6 h, and a decrease of 80% in the content of BAD, after 48 h, two mitochondrial proteins involved in regulation of apoptosis. Within 10 min of exposure, HPU is rapidly internalized by gastric epithelial cells. Treatment of the gastric cells with methyl-ß-cyclodextrin abolished HPU internalization suggesting a cholesterol-dependent process. HPU induces the expression of pro-angiogenic factors and the decrease of expression of anti-angiogenic factors by AGS cells. The angiogenic activity of HPU was analyzed using in vitro and in vivo models. HPU induced formation of tube-like structures by human umbilical vascular endothelial cells in a 9 h experiment. In the chicken embryo chorioallantoic membrane model, HPU induced intense neo-vascularization after 3 days. In conclusion, our results indicate that besides allowing bacterial colonization of the gastric mucosa, H. pylori's urease triggers processes that initiate pro-angiogenic responses in different cellular models. Thus, this bacterial urease, a major virulence factor, may also play a role in gastric carcinoma development.

14.
Acta Biomater ; 63: 96-109, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28919508

RESUMEN

Anticancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals provided by antigen-presenting cells (APCs). However, it is described that immature dendritic cells (DCs) and macrophages at the tumor site may have an immunosuppressive profile, which limits the activity of effector T cells and supports tumor progression. Therapeutic targeting of these innate immune cells, either aiming at their elimination or re-polarization towards an immunostimulatory profile, has been pointed as an attractive approach to control tumor progression. In the present work, we assessed the potential of Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) to modulate macrophages and DCs inflammatory profile and to impair their ability to promote cancer cell invasion. Interestingly, Ch/γ-PGA NPs, prepared by co-acervation method, induced an immunostimulatory DCs phenotype, enhancing the expression of the co-stimulatory molecules CD86, CD40 and HLA-DR, and the secretion of the pro-inflammatory cytokines TNF-α, IL-12p40 and IL-6. Furthermore, Ch/γ-PGA NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the expression of CD163 and promoting the secretion of IL-12p40 and TNF-α. These alterations in the immune cells phenotype promoted CD4+ and CD8+ T cell activation/proliferation and partially inhibited APCs' ability to induce colorectal cancer cell invasion. Overall, our findings open new perspectives on the use of Ch/γ-PGA NPs as an immunomodulatory therapy for antigen-presenting cells reprogramming, providing a new tool for anticancer therapies. STATEMENT OF SIGNIFICANCE: The immune system is responsible to detect and destroy abnormal cells preventing the development of cancer. However, the immunosuppressive tumor microenvironment can compromise the immune response favoring tumor progression. Thus, immune system modulation towards an immunostimulatory profile can improve anticancer therapies. This research focus on the development of chitosan/poly(γ-glutamic acid) nanoparticles (NPs) to modulate human antigen-presenting cells (APCs) phenotype and to counteract their pro-invasive capacity. Interestingly, Ch/γ-PGA NPs had a prominent effect in inducing macrophages and dendritic cells immunostimulatory phenotype, thus favoring T cell proliferation and inhibiting colorectal cancer cell invasion. We propose that their combination with other immunomodulatory drugs or conventional anticancer therapies can improve patients' outcome.


Asunto(s)
Células Presentadoras de Antígenos/patología , Movimiento Celular , Quitosano/efectos adversos , Inflamación/patología , Nanopartículas/efectos adversos , Ácido Poliglutámico/análogos & derivados , Células Presentadoras de Antígenos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Endocitosis/efectos de los fármacos , Humanos , Interleucina-10/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Invasividad Neoplásica , Tamaño de la Partícula , Fenotipo , Ácido Poliglutámico/administración & dosificación , Ácido Poliglutámico/efectos adversos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos
15.
Histochem Cell Biol ; 148(3): 331-341, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28523458

RESUMEN

Peroxisomes and mitochondria in mammalian cells are closely linked subcellular organelles, which maintain a redox-sensitive relationship. Their interplay and role in ROS signalling are supposed to impact on age-related and degenerative disorders. Whereas the generation of peroxisome-derived oxidative stress can affect mitochondrial morphology and function, little is known about the impact of mitochondria-derived oxidative stress on peroxisomes. Here, we investigated the effect of the mitochondrial complex I inhibitor rotenone on peroxisomal and mitochondrial membrane dynamics. We show that rotenone treatment of COS-7 cells alters peroxisome morphology and distribution. However, this effect is related to its microtubule-destabilising activity rather than to the generation of oxidative stress. Rotenone also induced alterations in mitochondrial morphology, which-in contrast to its effect on peroxisomes-were dependent on the generation of ROS but independent of its microtubule-active properties. The importance of our findings for the peroxisome-mitochondria redox relationship and the interpretation of in cellulo and in vivo studies with rotenone, which is widely used to study Parkinson's disease, are discussed.


Asunto(s)
Transporte de Electrón/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Rotenona/farmacología , Desacopladores/farmacología , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Microtúbulos/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
16.
Int J Pharm ; 519(1-2): 128-137, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28088639

RESUMEN

Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5®, Miglyol-812®) and a surfactant (Tween 60®). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25µM) than free DHA (>100µM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/farmacología , Helicobacter pylori/efectos de los fármacos , Lípidos/química , Nanopartículas/química , Línea Celular Tumoral , Portadores de Fármacos/química , Aceites de Pescado/química , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Nanoestructuras/química , Tamaño de la Partícula , Polisorbatos/química , Estómago/microbiología , Tensoactivos/química
17.
Addict Biol ; 22(6): 1706-1718, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27457910

RESUMEN

Caffeine has cognitive-enhancing properties with effects on learning and memory, concentration, arousal and mood. These effects imply changes at circuital and synaptic level, but the mechanism by which caffeine modifies synaptic plasticity remains elusive. Here we report that caffeine, at concentrations representing moderate to high levels of consumption in humans, induces an NMDA receptor-independent form of LTP (CAF LTP) in the CA1 region of the hippocampus by promoting calcium-dependent secretion of BDNF, which subsequently activates TrkB-mediated signaling required for the expression of CAF LTP. Our data include the novel observation that insulin receptor substrate 2 (IRS2) is phosphorylated during induction of CAF LTP, a process that requires cytosolic free Ca2+ . Consistent with the involvement of IRS2 signals in caffeine-mediated synaptic plasticity, phosphorylation of Akt (Ser473) in response to LTP induction is defective in Irs2-/- mice, demonstrating that these plasticity changes are associated with downstream targets of the phosphoinositide 3-kinase (PI3K) pathway. These findings indicate that TrkB-IRS2 signals are essential for activation of PI3K during the induction of LTP by caffeine.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Femenino , Proteínas Sustrato del Receptor de Insulina/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/genética , Masculino , Ratones , Modelos Animales
18.
Acta Biomater ; 46: 129-140, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27686038

RESUMEN

By using imaging flow cytometry as a powerful statistical high-throughput technique we investigated the impact of degradation on the biological performance of trimethyl chitosan (TMC)-based nanoparticles (NPs). In order to achieve high transfection efficiencies, a precise balance between NP stability and degradation must occur. We altered the biodegradation rate of the TMC NPs by varying the degree of acetylation (DA) of the polymer (DA ranged from 4 to 21%), giving rise to NPs with different enzymatic degradation profiles. While this parameter did not affect NP size, charge or ability to protect plasmid DNA, NPs based on TMC with an intermediate DA (16%) showed the highest transfection efficiency. Subsequently, by means of a single quantitative technique, we were able to follow, for each tested formulation, major steps of the NP-mediated gene delivery process - NP cell membrane association, internalization and intracellular trafficking, including plasmid DNA transport towards the nucleus. NP cytotoxicity was also possible to determine by quantification of cell apoptosis. Overall, the obtained data revealed that the biodegradation rate of these NPs affects their intracellular trafficking and, consequently, their efficiency to transfect cells. Thus, one can use the polymer DA to modulate the NPs towards attaining different degradation rates and tune their bioactivity according to the desired application. Furthermore, this novel technical approach revealed to be a valuable tool for the initial steps of nucleic acid vector design. STATEMENT OF SIGNIFICANCE: By changing the biodegradation rate of trimethyl chitosan-based nanoparticles (NPs) one was able to alter the NP ability to protect or efficiently release DNA and consequently, to modulate their intracellular dynamics. To address the influence of NP degradation rate in their transfection efficiency we took advantage of imaging flow cytometry, a high-throughput bioimaging technique, to unravel some critical aspects about NP formulation such as the distinction between internalized versus cell-associated/adsorbed NP, and even explore NP intracellular localization. Overall, our work provides novel information about the importance of vector degradation rate for gene delivery into cells, as a way to tune gene expression as a function of the desired application, and advances novel approaches to optimize nanoparticle formulation.


Asunto(s)
Quitosano/química , ADN/metabolismo , Técnicas de Transferencia de Gen , Imagenología Tridimensional , Nanopartículas/química , Acetilación , Animales , Muerte Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Endocitosis , Cinética , Ratones , Peso Molecular , Polímeros/química , Ratas , Transfección
19.
Acta Biomater ; 42: 168-179, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27321188

RESUMEN

UNLABELLED: Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1ß. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1ß-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. STATEMENT OF SIGNIFICANCE: Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti-inflammatory therapy for degenerated IVD that not only reduces inflammation but also promotes native IVD matrix production.


Asunto(s)
Antiinflamatorios/uso terapéutico , Quitosano/farmacología , Matriz Extracelular/metabolismo , Inflamación/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/terapia , Nanopartículas/química , Ácido Poliglutámico/análogos & derivados , Animales , Antiinflamatorios/farmacología , Bovinos , Endocitosis/efectos de los fármacos , Inflamación/patología , Inyecciones , Técnicas de Cultivo de Órganos , Tamaño de la Partícula , Ácido Poliglutámico/farmacología , Supervivencia Tisular/efectos de los fármacos
20.
BMC Cancer ; 16: 187, 2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26944411

RESUMEN

BACKGROUND: While the deregulation of iron homeostasis in breast epithelial cells is acknowledged, iron-related alterations in stromal inflammatory cells from the tumor microenvironment have not been explored. METHODS: Immunohistochemistry for hepcidin, ferroportin 1 (FPN1), transferrin receptor 1 (TFR1) and ferritin (FT) was performed in primary breast tissues and axillary lymph nodes in order to dissect the iron-profiles of epithelial cells, lymphocytes and macrophages. Furthermore, breast carcinoma core biopsies frozen in optimum cutting temperature (OCT) compound were subjected to imaging flow cytometry to confirm FPN1 expression in the cell types previously evaluated and determine its cellular localization. RESULTS: We confirm previous results by showing that breast cancer epithelial cells present an 'iron-utilization phenotype' with an increased expression of hepcidin and TFR1, and decreased expression of FT. On the other hand, lymphocytes and macrophages infiltrating primary tumors and from metastized lymph nodes display an 'iron-donor' phenotype, with increased expression of FPN1 and FT, concomitant with an activation profile reflected by a higher expression of TFR1 and hepcidin. A higher percentage of breast carcinomas, compared to control mastectomy samples, present iron accumulation in stromal inflammatory cells, suggesting that these cells may constitute an effective tissue iron reservoir. Additionally, not only the deregulated expression of iron-related proteins in epithelial cells, but also on lymphocytes and macrophages, are associated with clinicopathological markers of breast cancer poor prognosis, such as negative hormone receptor status and tumor size. CONCLUSIONS: The present results reinforce the importance of analyzing the tumor microenvironment in breast cancer, extending the contribution of immune cells to local iron homeostasis in the tumor microenvironment context.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Homeostasis , Hierro/metabolismo , Microambiente Tumoral , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Femenino , Citometría de Flujo , Expresión Génica , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Inmunohistoquímica , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...