Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775664

RESUMEN

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Asunto(s)
Macrófagos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Animales , Macrófagos/inmunología , Ratones , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Isquemia Miocárdica/inmunología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/inmunología , Masculino , Daño por Reperfusión Miocárdica/inmunología , Daño por Reperfusión Miocárdica/patología , Ratones Endogámicos C57BL , Miocardio/patología , Miocardio/inmunología , Modelos Animales de Enfermedad
2.
Dev Cell ; 59(10): 1284-1301.e8, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569551

RESUMEN

Macrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs. In Drosophila, HSC-independent EMs also colonize the larva when late hematopoiesis occurs. The evolutionarily conserved immune system allowed us to investigate whether/how EMs modulate late hematopoiesis in two models. We show that loss of EMs in Drosophila and mice accelerates late hematopoiesis, which does not correlate with inflammation and does not rely on macrophage phagocytic ability. Rather, EM-derived extracellular matrix components underlie late hematopoiesis acceleration. This demonstrates a developmental role for EMs.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Macrófagos , Animales , Hematopoyesis/fisiología , Macrófagos/metabolismo , Ratones , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Fagocitosis/fisiología , Drosophila melanogaster , Matriz Extracelular/metabolismo , Drosophila , Diferenciación Celular
3.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35438172

RESUMEN

Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology.


Asunto(s)
Macrófagos , Placenta , Animales , Femenino , Células Madre Hematopoyéticas , Ratones , Células Progenitoras Mieloides , Embarazo , Saco Vitelino
4.
Immunity ; 54(7): 1433-1446.e5, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34062116

RESUMEN

The extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks.


Asunto(s)
Diferenciación Celular/fisiología , Eritrocitos/citología , Megacariocitos/citología , Células Mieloides/citología , Células Madre/citología , Saco Vitelino/citología , Animales , Linaje de la Célula/fisiología , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Granulocitos/citología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/citología , Células Madre Multipotentes/citología , Embarazo
5.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33566111

RESUMEN

In the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac-derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors.


Asunto(s)
Desarrollo Embrionario/genética , Eritrocitos/metabolismo , Eritropoyesis , Células Progenitoras de Megacariocitos/metabolismo , Saco Vitelino/fisiología , Animales , Linaje de la Célula/genética , Eritropoyetina/metabolismo , Femenino , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteínas Proto-Oncogénicas c-myb/deficiencia , Proteínas Proto-Oncogénicas c-myb/genética
6.
Sci Adv ; 6(48)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33239294

RESUMEN

Resident macrophages are abundant in the bladder, playing key roles in immunity to uropathogens. Yet, whether they are heterogeneous, where they come from, and how they respond to infection remain largely unknown. We identified two macrophage subsets in mouse bladders, MacM in muscle and MacL in the lamina propria, each with distinct protein expression and transcriptomes. Using a urinary tract infection model, we validated our transcriptomic analyses, finding that MacM macrophages phagocytosed more bacteria and polarized to an anti-inflammatory profile, whereas MacL macrophages died rapidly during infection. During resolution, monocyte-derived cells contributed to tissue-resident macrophage pools and both subsets acquired transcriptional profiles distinct from naïve macrophages. Macrophage depletion resulted in the induction of a type 1-biased immune response to a second urinary tract infection, improving bacterial clearance. Our study uncovers the biology of resident macrophages and their responses to an exceedingly common infection in a largely overlooked organ, the bladder.


Asunto(s)
Vejiga Urinaria , Infecciones Urinarias , Animales , Perfilación de la Expresión Génica , Macrófagos/metabolismo , Ratones , Infecciones Urinarias/metabolismo
7.
J Vis Exp ; (125)2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28745620

RESUMEN

Macrophages are professional phagocytes from the innate arm of the immune system. In steady-state, sessile macrophages are found in adult tissues where they act as front line sentinels of infection and tissue damage. While other immune cells are continuously renewed from hematopoietic stem and progenitor cells (HSPC) located in the bone marrow, a lineage of macrophages, known as resident macrophages, have been shown to be self-maintained in tissues without input from bone marrow HSPCs. This lineage is exemplified by microglia in the brain, Kupffer cells in the liver and Langerhans cells in the epidermis among others. The intestinal and colon lamina propria are the only adult tissues devoid of HSPC-independent resident macrophages. Recent investigations have identified that resident macrophages originate from the extra-embryonic yolk sac hematopoiesis from progenitor(s) distinct from fetal hematopoietic stem cells (HSC). Among yolk sac definitive hematopoiesis, erythromyeloid progenitors (EMP) give rise both to erythroid and myeloid cells, in particular resident macrophages. EMP are only generated within the yolk sac between E8.5 and E10.5 days of development and they migrate to the fetal liver as early as circulation is connected, where they expand and differentiate until at least E16.5. Their progeny includes erythrocytes, macrophages, neutrophils and mast cells but only EMP-derived macrophages persist until adulthood in tissues. The transient nature of EMP emergence and the temporal overlap with HSC generation renders the analysis of these progenitors difficult. We have established a tamoxifen-inducible fate mapping protocol based on expression of the macrophage cytokine receptor Csf1r promoter to characterize EMP and EMP-derived cells in vivo by flow cytometry.


Asunto(s)
Embrión de Mamíferos/citología , Citometría de Flujo/métodos , Células Madre/citología , Animales , Diferenciación Celular , Células Cultivadas , Desarrollo Embrionario/efectos de los fármacos , Femenino , Antígenos Comunes de Leucocito/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Madre/metabolismo , Tamoxifeno/farmacología , Grabación en Video , Saco Vitelino/citología
8.
Sci Rep ; 7: 43817, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28272478

RESUMEN

Erythro-myeloid progenitors (EMPs) were recently described to arise from the yolk sac endothelium, just prior to vascular remodeling, and are the source of adult/post-natal tissue resident macrophages. Questions remain, however, concerning whether EMPs differentiate directly from the endothelium or merely pass through. We provide the first evidence in vivo that EMPs can emerge directly from endothelial cells (ECs) and demonstrate a role for these cells in vascular development. We find that EMPs express most EC markers but late EMPs and EMP-derived cells do not take up acetylated low-density lipoprotein (AcLDL), as ECs do. When the endothelium is labelled with AcLDL before EMPs differentiate, EMPs and EMP-derived cells arise that are AcLDL+. If AcLDL is injected after the onset of EMP differentiation, however, the majority of EMP-derived cells are not double labelled. We find that cell division precedes entry of EMPs into circulation, and that blood flow facilitates the transition of EMPs from the endothelium into circulation in a nitric oxide-dependent manner. In gain-of-function studies, we inject the CSF1-Fc ligand in embryos and found that this increases the number of CSF1R+ cells, which localize to the venous plexus and significantly disrupt venous remodeling. This is the first study to definitively establish that EMPs arise from the endothelium in vivo and show a role for early myeloid cells in vascular development.


Asunto(s)
Células Endoteliales/citología , Células Precursoras Eritroides/citología , Células Madre Embrionarias de Ratones/citología , Células Progenitoras Mieloides/citología , Remodelación Vascular , Saco Vitelino/citología , Animales , Células Endoteliales/metabolismo , Células Precursoras Eritroides/metabolismo , Femenino , Hematopoyesis , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Células Madre Embrionarias de Ratones/metabolismo , Células Progenitoras Mieloides/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Saco Vitelino/irrigación sanguínea , Saco Vitelino/embriología
9.
Immunity ; 45(6): 1205-1218, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28002729

RESUMEN

Inflammation triggers the differentiation of Ly6Chi monocytes into microbicidal macrophages or monocyte-derived dendritic cells (moDCs). Yet, it is unclear whether environmental inflammatory cues control the polarization of monocytes toward each of these fates or whether specialized monocyte progenitor subsets exist before inflammation. Here, we have shown that naive monocytes are phenotypically heterogeneous and contain an NR4A1- and Flt3L-independent, CCR2-dependent, Flt3+CD11c-MHCII+PU.1hi subset. This subset acted as a precursor for FcγRIII+PD-L2+CD209a+, GM-CSF-dependent moDCs but was distal from the DC lineage, as shown by fate-mapping experiments using Zbtb46. By contrast, Flt3-CD11c-MHCII-PU.1lo monocytes differentiated into FcγRIII+PD-L2-CD209a-iNOS+ macrophages upon microbial stimulation. Importantly, Sfpi1 haploinsufficiency genetically distinguished the precursor activities of monocytes toward moDCs or microbicidal macrophages. Indeed, Sfpi1+/- mice had reduced Flt3+CD11c-MHCII+ monocytes and GM-CSF-dependent FcγRIII+PD-L2+CD209a+ moDCs but generated iNOS+ macrophages more efficiently. Therefore, intercellular disparities of PU.1 expression within naive monocytes segregate progenitor activity for inflammatory iNOS+ macrophages or moDCs.


Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Traslado Adoptivo , Animales , Antígenos Ly/inmunología , Separación Celular , Células Dendríticas/citología , Citometría de Flujo , Macrófagos/citología , Ratones , Monocitos/citología , Óxido Nítrico Sintasa de Tipo II/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa
10.
J Pathol ; 240(4): 461-471, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27577973

RESUMEN

Dynamic control of endothelial cell junctions is essential for vascular homeostasis and angiogenesis. We recently provided genetic evidence that ANGPTL4 is a key regulator of vascular integrity both during developmental and in hypoxia-induced pathological conditions. The purpose of the present study was to decipher the molecular mechanisms through which ANGPTL4 regulates vascular integrity. Using surface plasmon resonance and proximity ligation assays, we show that ANGPTL4 binds integrin αvß3. In vitro and in vivo functional assays with Angptl4-deficient mice demonstrate that ANGPTL4-αvß3 interaction is necessary to mediate ANGPTL4 vasoprotective effects. Mechanistically, ANGPTL4-αvß3 interaction enhances Src recruitment to integrin αvß3 and inhibits Src signalling downstream of vascular endothelial growth factor receptor 2 (VEFGR2), thereby repressing hypoxia-induced breakdown of VEGFR2-VE-cadherin and VEGFR2-αvß3 complexes. We further demonstrate that intravitreal injection of recombinant human ANGPTL4 limits vascular permeability and leads to increased adherens junction and tight junction integrity. These findings identify a novel mechanism by which ANGPTL4 counteracts hypoxia-driven vascular permeability through integrin αvß3 binding, modulation of VEGFR2-Src kinase signalling, and endothelial junction stabilization. We further demonstrate that Angptl4-deficient mice show increased vascular leakage in vivo in a model of laser-induced choroidal neovascularization, indicating that this newly identified ANGPTL4-αvß3 axis might be a target for pharmaceutical intervention in pathological conditions. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Angiopoyetinas/metabolismo , Permeabilidad Capilar/fisiología , Integrina alfaVbeta3/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/deficiencia , Animales , Hipoxia de la Célula/fisiología , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/fisiopatología , Humanos , Ratones Noqueados , Fosforilación/fisiología , Retina/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
11.
Science ; 353(6304)2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27492475

RESUMEN

Tissue-resident macrophages support embryonic development and tissue homeostasis and repair. The mechanisms that control their differentiation remain unclear. We report here that erythro-myeloid progenitors in mice generate premacrophages (pMacs) that simultaneously colonize the whole embryo from embryonic day 9.5 in a chemokine-receptor-dependent manner. The core macrophage program initiated in pMacs is rapidly diversified as expression of transcriptional regulators becomes tissue-specific in early macrophages. This process appears essential for macrophage specification and maintenance, as inactivation of Id3 impairs the development of liver macrophages and results in selective Kupffer cell deficiency in adults. We propose that macrophage differentiation is an integral part of organogenesis, as colonization of organ anlagen by pMacs is followed by their specification into tissue macrophages, hereby generating the macrophage diversity observed in postnatal tissues.


Asunto(s)
Diferenciación Celular/genética , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Macrófagos/citología , Células Progenitoras Mieloides/citología , Organogénesis , Animales , Receptor 1 de Quimiocinas CX3C , Desarrollo Embrionario , Inducción Embrionaria , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/metabolismo , Femenino , Hematopoyesis/genética , Hematopoyesis/fisiología , Proteínas Inhibidoras de la Diferenciación/metabolismo , Macrófagos del Hígado/citología , Macrófagos del Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Mutantes , Células Progenitoras Mieloides/metabolismo , Especificidad de Órganos , Receptores de Quimiocina/genética , Transcriptoma
12.
Semin Immunol ; 27(6): 369-78, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-27036090

RESUMEN

Macrophages are important for tissue development, homeostasis as well as immune response upon injury or infection. For a long time they were only seen as one uniform group of phagocytes with a common origin and similar functions. However, this view has been challenged in the last decade and revealed a complex diversity of tissue resident macrophages. Here, we want to present the current view on macrophage development and tissue specification and we will discuss differences as well as common patterns between heterogeneous macrophage subpopulations.


Asunto(s)
Macrófagos/citología , Macrófagos/inmunología , Animales , Ratones , Modelos Biológicos , Células Madre/citología , Células Madre/inmunología
13.
Nature ; 518(7540): 547-51, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25470051

RESUMEN

Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages.


Asunto(s)
Linaje de la Célula , Eritrocitos/citología , Hematopoyesis , Macrófagos/citología , Células Madre/citología , Saco Vitelino/citología , Animales , Proliferación Celular , Rastreo Celular , Femenino , Feto/citología , Granulocitos/citología , Macrófagos del Hígado/citología , Células de Langerhans/citología , Hígado/citología , Hígado/embriología , Macrófagos Alveolares/citología , Masculino , Ratones , Microglía/citología , Monocitos/citología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor TIE-2/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-24122769

RESUMEN

In most metazoans, all tissues contain phagocytes "in residence," generally termed "macrophages" in vertebrates. In contrast to myeloid cells produced continuously by the bone marrow (BM), tissue-resident macrophages develop during embryogenesis together with their tissue of residence, and persist in adulthood, independently of hematopoietic stem cells and the transcription factor Myb. They therefore represent an independent lineage from blood monocytes, dendritic cells, and monocytes/macrophages that are recruited to tissues during inflammation. Tissue-resident macrophage functions are yet to be completely defined. They all share the ability to scavenge toxic compounds, lipids, microorganisms, and dead cells and contribute to tissue remodeling, via phagocytosis and the production of growth factors. In contrast, the production of inflammatory mediators seems to be more associated with BM-derived cells. Tissue-resident macrophages and BM-derived myeloid cells thus differ in developmental origin and functions; the term "macrophages" could be reserved for Myb-independent-resident macrophages to avoid confusion. A genetic and molecular dissection of resident macrophage functions will reveal their roles in tissue metabolism and the maintenance of homeostasis independently of the extravasation of inflammatory leukocytes, and in the control of the recruitment of BM-derived cells in overt inflammation.


Asunto(s)
Macrófagos/citología , Proteínas Proto-Oncogénicas c-myb/metabolismo , Animales , Células de la Médula Ósea/citología , Linaje de la Célula , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Homeostasis , Humanos , Inflamación/inmunología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Fagocitosis
16.
Glia ; 61(1): 112-20, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22847963

RESUMEN

Microglia, macrophages of the central nervous system, play an important role in brain homeostasis. Their origin has been unclear. Recent fate-mapping experiments have established that microglia mostly originate from Myb-independent, FLT3-independent, but PU.1-dependent precursors that express the CSF1-receptor at E8.5 of embryonic development. These precursors are presumably located in the yolk sac (YS) at this time before invading the embryo between E9.5 and E10.5 and colonizing the fetal liver. Indeed, the E14.5 fetal liver contains a large population of Myb-independent YS-derived myeloid cells. This myeloid lineage is distinct from hematopoietic stem cells (HSCs), which require the transcription factor Myb for their development and maintenance. This "yolky" beginning and the independence from conventional HSCs are not unique to microglia. Indeed, several other populations of F4/80-positive macrophages develop also from YS Myb-independent precursors, such as Kupffer cells in the liver, Langerhans cells in the epidermis, and macrophages in the spleen, kidney, pancreas, and lung. Importantly, microglia and the other Myb-independent macrophages persist, at least in part, in adult mice and likely self-renew within their respective tissues of residence, independently of bone marrow HSCs. This suggests the existence of tissue resident macrophage "stem cells" within tissues such as the brain, and opens a new era for the molecular and cellular understanding of myeloid cells responses during acute and chronic inflammation.


Asunto(s)
Diferenciación Celular/fisiología , Homeostasis/fisiología , Microglía/fisiología , Células Mieloides/fisiología , Neurogénesis/fisiología , Animales , Linaje de la Célula/fisiología , Células Madre Hematopoyéticas/fisiología , Humanos
17.
Science ; 336(6077): 86-90, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22442384

RESUMEN

Macrophages and dendritic cells (DCs) are key components of cellular immunity and are thought to originate and renew from hematopoietic stem cells (HSCs). However, some macrophages develop in the embryo before the appearance of definitive HSCs. We thus reinvestigated macrophage development. We found that the transcription factor Myb was required for development of HSCs and all CD11b(high) monocytes and macrophages, but was dispensable for yolk sac (YS) macrophages and for the development of YS-derived F4/80(bright) macrophages in several tissues, such as liver Kupffer cells, epidermal Langerhans cells, and microglia--cell populations that all can persist in adult mice independently of HSCs. These results define a lineage of tissue macrophages that derive from the YS and are genetically distinct from HSC progeny.


Asunto(s)
Células Dendríticas/citología , Células Madre Hematopoyéticas/citología , Macrófagos/citología , Células Mieloides/citología , Mielopoyesis , Proteínas Proto-Oncogénicas c-myb/metabolismo , Saco Vitelino/citología , Animales , Linaje de la Célula , Proliferación Celular , Embrión de Pollo , Células Dendríticas/fisiología , Embrión de Mamíferos/citología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes myb , Células Madre Hematopoyéticas/fisiología , Macrófagos del Hígado/citología , Macrófagos del Hígado/fisiología , Células de Langerhans/citología , Células de Langerhans/fisiología , Hígado/embriología , Macrófagos/fisiología , Ratones , Microglía/citología , Microglía/fisiología , Células Mieloides/fisiología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...