Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982644

RESUMEN

Kα,ß X-ray lines from photon excitation were measured in selected elements from Mg to Cu using a high-resolution double-crystal X-ray spectrometer with a proportional counter, and the Kß/Kα intensity ratio for each element was obtained, after correcting for self-absorption, detection efficiency, and crystal reflectance. This intensity ratio increases rapidly from Mg to Ca but, in the 3d elements region, the increase becomes slower. This is related to the intensity of the Kß line involving valence electrons. The slow increase of this ratio in the 3d elements region is thought to be due to the correlation between 3d and 4s electrons. Moreover, the chemical shifts, FWHM, asymmetry indices, and Kß/Kα intensity ratios of the Cr compounds, due to different valences, were also investigated using the same double-crystal X-ray spectrometer. The chemical effects were clearly observed, and the Kß/Kα intensity ratio was found to be compound-dependent for Cr.


Asunto(s)
Electrones , Rayos X
2.
Environ Sci Pollut Res Int ; 27(19): 23402-23410, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31119536

RESUMEN

Halophytes are able to tolerate relatively high concentrations of hazardous metals in a growing substrate, what makes them suitable candidates for phytoremediation of metal-contaminated soils. In this work, we aimed to study the physiological responses of the halophyte Sesuvium portulacastrum L. to Ni, with main focus on Ni localization, compartmentation and ligand environment, to decipher Ni tolerance and toxicity mechanisms. Seedlings were grown in hydroponic nutrient solution containing 0, 25, 50 and 100 µM Ni as NiCl2 for 3 weeks. Ni localization in leaves was assessed by micro-proton-induced X-ray emission (micro-PIXE). Ni ligand environment was studied by Ni K-edge X-ray absorption near edge structure (XANES). In addition, Ni-soluble, weakly bound/exchangeable and insoluble leaf tissue fractions were determined by sequential extraction. Results show that S. portulacastrum is able to tolerate up to ~ 500 µg g-1 dry weight (DW) of Ni in the shoots without significant growth reduction. At higher Ni concentrations (> 50 µM Ni in nutrient solution), chloroses were observed due to the accumulation of Ni in photosynthetically active chlorenchyma as revealed by micro-PIXE. Water storage tissue represented the main pool for Ni storage. Incorporation of Ni into Ca-oxalate crystals was also observed in some specimens, conferring tolerance to high leaf Ni concentrations. The majority of Ni (> 70%) was found in soluble tissue fraction. Ni K XANES revealed Ni bound mainly to O- (55%) and N-ligands (45%). Ni toxicity at higher Ni levels was associated with Ni binding to amino groups of proteins in cytosol of chlorenchyma and increased level of lipid peroxidation. Proline levels also increased at high Ni exposures and were associated with Ni-induced oxidative stress and alteration of water regime.


Asunto(s)
Aizoaceae , Plantas Tolerantes a la Sal , Biodegradación Ambiental , Ligandos , Níquel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA