Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(1): e0225622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475892

RESUMEN

The reprogramming of cellular metabolism of immune cells is an essential process in the regulation of antifungal immune responses. In particular, glucose metabolism has been shown to be required for protective immunity against infection with Aspergillus fumigatus. However, given the intricate cross talk between multiple metabolic networks and signals, it is likely that cellular metabolic pathways other than glycolysis are also relevant during fungal infection. In this study, we demonstrate that glutamine metabolism is required for the activation of macrophage effector functions against A. fumigatus. Glutamine metabolism was found to be upregulated early after fungal infection and glutamine depletion or the pharmacological inhibition of enzymes involved in its metabolism impaired phagocytosis and the production of both proinflammatory and T-cell-derived cytokines. In an in vivo model, inhibition of glutaminase increased susceptibility to experimental aspergillosis, as revealed by the increased fungal burden and inflammatory pathology, and the defective cytokine production in the lungs. Moreover, genetic variants in glutamine metabolism genes were found to regulate cytokine production in response to A. fumigatus stimulation. Taken together, our results demonstrate that glutamine metabolism represents an important component of the immunometabolic response of macrophages against A. fumigatus both in vitro and in vivo. IMPORTANCE The fungal pathogen Aspergillus fumigatus can cause severe and life-threatening forms of infection in immunocompromised patients. The reprogramming of cellular metabolism is essential for innate immune cells to mount effective antifungal responses. In this study, we report the pivotal contribution of glutaminolysis to the host defense against A. fumigatus. Glutamine metabolism was essential both in vitro as well as in in vivo models of infection, and genetic variants in human glutamine metabolism genes regulated cytokine production in response to fungal stimulation. This work highlights the relevance of glutaminolysis to the pathogenesis of aspergillosis and supports a role for interindividual genetic variation influencing glutamine metabolism in susceptibility to infection.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Glutamina , Antifúngicos , Aspergilosis/microbiología , Citocinas/metabolismo
2.
Am J Respir Crit Care Med ; 206(9): 1140-1152, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35767663

RESUMEN

Rationale: Sarcoidosis is a multisystemic inflammatory disease characterized by the formation of granulomas in response to persistent stimuli. The long pentraxin PTX3 (pentraxin 3) has emerged as a component of humoral innate immunity with essential functions in the resolution of inflammation, but its role during granuloma formation is unknown. Objectives: To evaluate PTX3 as a modulator of pathogenic signals involved in granuloma formation and inflammation in sarcoidosis. Methods: Peripheral blood mononuclear cells obtained from patients with sarcoidosis harboring loss-of-function genetic variants and gene-deleted mice were used to assess the role of PTX3 in experimental models of granuloma formation in vitro and in vivo. The identified mechanisms of granulomatous inflammation were further evaluated in tissue and BAL samples and correlated with the disease course. Measurements and Main Results: We have identified a molecular link between PTX3 deficiency and the pathogenic amplification of complement activation to promote granuloma formation. Mechanistically, PTX3 deficiency licensed the complement component C5a-mediated activation of the metabolic checkpoint kinase mTORC1 (mammalian target of rapamycin complex 1) and the reprogramming of macrophages toward increased glycolysis to foster their proliferation and aggregation. This process sustained the further recruitment of granuloma-promoting immune cells and the associated proinflammatory microenvironment and influenced the clinical course of the disease. Conclusions: Our results identify PTX3 as a pivotal molecule that regulates complement-mediated signaling cues in macrophages to restrain granulomatous inflammation and highlight the therapeutic potential of this signaling axis in targeting granuloma formation in sarcoidosis.


Asunto(s)
Proteína C-Reactiva , Activación de Macrófagos , Sarcoidosis , Componente Amiloide P Sérico , Animales , Ratones , Proteína C-Reactiva/metabolismo , Proteínas del Sistema Complemento , Granuloma , Inflamación , Leucocitos Mononucleares/metabolismo , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Humanos
3.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041649

RESUMEN

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Gliotoxina/farmacología , Metiltransferasas/genética , Factores de Transcripción/genética , Aspergillus/efectos de los fármacos , Aspergillus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Aspergillus nidulans/efectos de los fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Aspergillus oryzae/efectos de los fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crecimiento & desarrollo , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Gliotoxina/biosíntesis , RNA-Seq
4.
Thorax ; 77(3): 283-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34172558

RESUMEN

RATIONALE: Recent studies have revealed that the lung microbiota of critically ill patients is altered and predicts clinical outcomes. The incidence of invasive fungal infections, namely, invasive pulmonary aspergillosis (IPA), in immunocompromised patients is increasing, but the clinical significance of variations in lung bacterial communities is unknown. OBJECTIVES: To define the contribution of the lung microbiota to the development and course of IPA. METHODS AND MEASUREMENTS: We performed an observational cohort study to characterise the lung microbiota in 104 immunocompromised patients using bacterial 16S ribosomal RNA gene sequencing on bronchoalveolar lavage samples sampled on clinical suspicion of infection. Associations between lung dysbiosis in IPA and pulmonary immunity were evaluated by quantifying alveolar cytokines and chemokines and immune cells. The contribution of microbial signatures to patient outcome was assessed by estimating overall survival. MAIN RESULTS: Patients diagnosed with IPA displayed a decreased alpha diversity, driven by a markedly increased abundance of the Staphylococcus, Escherichia, Paraclostridium and Finegoldia genera and a decreased proportion of the Prevotella and Veillonella genera. The overall composition of the lung microbiome was influenced by the neutrophil counts and associated with differential levels of alveolar cytokines. Importantly, the degree of bacterial diversity at the onset of IPA predicted the survival of infected patients. CONCLUSIONS: Our results reveal the lung microbiota as an understudied source of clinical variation in patients at risk of IPA and highlight its potential as a diagnostic and therapeutic target in the context of respiratory fungal diseases.


Asunto(s)
Aspergilosis Pulmonar Invasiva , Microbiota , Líquido del Lavado Bronquioalveolar/microbiología , Humanos , Huésped Inmunocomprometido , Aspergilosis Pulmonar Invasiva/diagnóstico , Pulmón/microbiología , Microbiota/genética
5.
mBio ; 12(4): e0168221, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34311583

RESUMEN

Aspergillus fumigatus is a major opportunistic fungal pathogen of immunocompromised and immunocompetent hosts. To successfully establish an infection, A. fumigatus needs to use host carbon sources, such as acetate, present in the body fluids and peripheral tissues. However, utilization of acetate as a carbon source by fungi in the context of infection has not been investigated. This work shows that acetate is metabolized via different pathways in A. fumigatus and that acetate utilization is under the regulatory control of a transcription factor (TF), FacB. A. fumigatus acetate utilization is subject to carbon catabolite repression (CCR), although this is only partially dependent on the TF and main regulator of CCR CreA. The available extracellular carbon source, in this case glucose and acetate, significantly affected A. fumigatus virulence traits such as secondary metabolite secretion and cell wall composition, with the latter having consequences for resistance to oxidative stress, antifungal drugs, and human neutrophil-mediated killing. Furthermore, deletion of facB significantly impaired the in vivo virulence of A. fumigatus in both insect and mammalian models of invasive aspergillosis. This is the first report on acetate utilization in A. fumigatus, and this work further highlights the importance of available host-specific carbon sources in shaping fungal virulence traits and subsequent disease outcome, and a potential target for the development of antifungal strategies. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion. This work shows that A. fumigatus metabolizes acetate via different pathways, a process that is dependent on the transcription factor FacB. Furthermore, the type and concentration of the extracellular available carbon source were determined to shape A. fumigatus virulence determinants such as secondary metabolite secretion and cell wall composition. Subsequently, interactions with immune cells are altered in a carbon source-specific manner. FacB is required for A. fumigatus in vivo virulence in both insect and mammalian models of invasive aspergillosis. This is the first report that characterizes acetate utilization in A. fumigatus and highlights the importance of available host-specific carbon sources in shaping virulence traits and potentially subsequent disease outcome.


Asunto(s)
Acetatos/metabolismo , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Humanos , Larva/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mariposas Nocturnas/microbiología , Neutrófilos/microbiología , Fenotipo , Metabolismo Secundario , Virulencia
6.
Future Microbiol ; 16: 589-606, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33998266

RESUMEN

Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.


Asunto(s)
Proteínas Fúngicas/genética , Glicosilfosfatidilinositoles/metabolismo , Proteínas de la Membrana/genética , Paracoccidioides/metabolismo , Secuencia de Aminoácidos , Pared Celular/genética , Pared Celular/metabolismo , Biología Computacional , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Sistemas de Lectura Abierta , Paracoccidioides/genética , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/microbiología , Proteómica , Virulencia
7.
Curr Pharm Des ; 26(14): 1509-1520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183659

RESUMEN

Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.


Asunto(s)
Antifúngicos , Descubrimiento de Drogas , Hongos/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Proteómica , Calidad de Vida
8.
Neurotox Res ; 37(4): 1009-1017, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31997154

RESUMEN

Tannic acid (TA) is a hydrolysable glycosidic polyphenol polymer of gallic acid, which possesses neuroprotective properties. The aim of this study was to evaluate the effect of TA treatment on cognitive performance and neurochemical changes in an experimental model of sporadic dementia of Alzheimer's type (SDAT) induced by intracerebroventricular (ICV) injection of streptozotocin (STZ) and to explore the potential cellular and molecular mechanisms underlying these effects. Adult male rats were divided into four groups: control, TA, STZ, and TA + STZ. Animals from TA and TA + STZ groups were treated with TA (30 mg/kg) daily, by gavage, for 21 days; others groups received water (1 mL/kg). Subsequently, an ICV injection of STZ (3 mg/kg) was administered into the lateral ventricles of animals from STZ and TA + STZ groups, while other groups received citrate buffer. Cognitive deficits (short-term memory), neuronal survival, neuroinflammation as well as expression of SNAP-25, Akt, and pAkt were evaluated in the cerebral cortex. TA treatment protected against the impairment of memory in STZ-induced SDAT. STZ promoted an increase in neuronal death and the levels of proinflammatory cytokines (IL-6 and TNF-α) and a decrease in Akt and pAkt expression; TA was able to restore these changes. Neither STZ nor TA altered SNAP-25 expression or the levels of IL-12 and IL-4 in the cerebral cortex. Our study highlights that treatment with TA prevents memory deficits and reestablishes Akt and pAkt expression, protecting against neuronal death and neuroinflammation in STZ-induced SDAT in rats.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Mediadores de Inflamación/metabolismo , Trastornos de la Memoria/metabolismo , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Estreptozocina/toxicidad , Taninos/uso terapéutico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/prevención & control , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Ratas Wistar , Taninos/farmacología
9.
mBio ; 8(4)2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720727

RESUMEN

Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis.IMPORTANCE The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.


Asunto(s)
Proteínas Fúngicas/metabolismo , Silenciador del Gen , Lectinas/metabolismo , Paracoccidioides/patogenicidad , Factores de Virulencia/metabolismo , Animales , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Lectinas/genética , Masculino , Ratones Endogámicos BALB C , Micelio/citología , Micelio/crecimiento & desarrollo , Paracoccidioides/citología , Paracoccidioides/genética , Paracoccidioides/crecimiento & desarrollo , Paracoccidioidomicosis/microbiología , Paracoccidioidomicosis/patología , Análisis de Supervivencia , Virulencia , Factores de Virulencia/genética
10.
Front Microbiol ; 7: 1003, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458431

RESUMEN

The fungal human pathogen Paracoccidioides brasiliensis contains paracoccin (PCN), a multi-domain protein that has lectin and N-acetyl-glucosaminidase activities, which account for its effects on the growth and morphogenesis of the fungus and on the activation of host macrophages through its interaction with TLR N-glycans. With the purpose of detailing the knowledge on the effects of PCN on macrophages, we used recombinant PCN expressed in Pichia pastoris (p-rPCN) to stimulate isolated murine peritoneal macrophages. The activation of these cells manifested through the release of high levels of inflammatory mediators, such as nitric oxide, TNF-α, IL-12p40, and IL-6. Furthermore, peritoneal macrophages stimulated with p-rPCN increased the relative expression of STAT1, SOCS3, and iNOS2 mRNA (M1 polarization markers). However, the expression of Arginase-1, Ym-1, and FIZZ1 (M2 polarization markers) remained at basal levels. Interestingly, the observed M1 macrophages' polarization triggered by p-rPCN was abolished in cells obtained from knockout Toll-like receptor-4 mice. In this case, the p-rPCN-induced production of pro-inflammatory mediators was blocked too. These results demonstrate that the classical activation of macrophages induced by paracoccin depends on TLR4. Taken together, the results of our study indicate that paracoccin acts as a TLR agonist able to modulate immunity and exerts biological activities that favor its applicability as an immunotherapeutic agent to combat systemic fungal infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...