Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667785

RESUMEN

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Asunto(s)
Diabetes Mellitus , Suplementos Dietéticos , Hipoglucemiantes , Algas Marinas , Algas Marinas/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Organismos Acuáticos
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255871

RESUMEN

Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.


Asunto(s)
Medicina , Desarrollo de Medicamentos , Vitaminas , Vehículos Farmacéuticos , Océanos y Mares
3.
Sci Total Environ ; 913: 169676, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38160819

RESUMEN

Pesticide application increased by about 1 million tonnes in the last 3 decades. Pesticides' overuse, coupled with the need for several pesticides to control different pests in the same crop, and its application many times per year, results in dangerous chemical cocktails that enter in aquatic systems, with impacts to the ecosystems and its communities. Climatic changes are currently another great concern, is predicted by the end of the 21st century, the earth's surface temperature will increase by about 4 °C. Bivalve species are reported as essential to the ecosystems' balance. However, they are also indicated as the organisms that will suffer the most serious effects of the temperature increase. So, this work intends to: a) verify the harm of the sub-lethal concentrations of two worldwide used pesticides, oxyfluorfen and copper (Cu), when combined, to Cerastoderma edule at 15 °C and 20 °C; b) assess the changes in the antioxidant defence system, the activity of the neurological enzyme acetylcholinesterase and the nutritive value of C. edule, after exposure to sub-lethal concentrations of oxyfluorfen and Cu, single and in the mixture, at 15 °C and 20 °C; c) observe the interaction between Cu and oxyfluorfen, considering the different biomarkers. Bivalves were exposed to oxyfluorfen and Cu, single and combined, for 96 h, at 15 °C and 20 °C. Results showed lethal effects to the organisms exposed at 20 °C when exposed to the highest binary mixture concentrations. Biochemical effects were observed on the organisms exposed to 15 °C, despite not observing any lethal effects. Briefly, there was a reported increase in oxidative stress and a decrease in protein content, regardless of the increase in the activity of antioxidant enzymes. These results suggest the potentially dangerous effects of the chemicals' mixture combined with the temperature, on this species and its consumers, impacting the trophic chain, and consequently, the community structure and function.


Asunto(s)
Bivalvos , Cardiidae , Éteres Difenilos Halogenados , Plaguicidas , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Cardiidae/metabolismo , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Acetilcolinesterasa/metabolismo , Ecosistema , Bivalvos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
4.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37760058

RESUMEN

Currently, there is increased chemical pollution, and climate change is a major concern to scientific, political and social communities globally. Marine systems are very susceptible to changes, and considering the ecological and economic roles of bivalve species, like Cerastoderma edule, studies evaluating the effects of both stressors are of great importance. This study intends to (a) determine the toxicity of copper (Cu) and oxyfluorfen at the lethal level, considering the temperature; (b) assess the changes in the antioxidant defence enzymes as a consequence of the simultaneous exposure to chemical and warming pressures; and (c) determine if lipid peroxidation (LPO) and neurotoxic effects occur after the exposure to chemical and temperature stressors. C. edule was exposed to Cu and oxyfluorfen at different temperatures (15 °C, 20 °C and 25 °C) for 96 h. The ecotoxicological results reveal a higher tolerance of C. edule to oxyfluorfen than to Cu, regardless of the temperature. The antioxidant defence system revealed efficiency in fighting the chemicals' action, with no significant changes in the thiobarbituric reactive species (TBARS) levels to 15 °C and 20 °C. However, a significant inhibition of acetylcholinesterase (AChE) was observed on the organisms exposed to oxyfluorfen at 20 °C, as well as a decreasing trend on the ones exposed to Cu at this temperature. Moreover, the catalase (CAT) showed a significant increase in the organisms exposed to the two highest concentrations of Cu at 15 °C and in the ones exposed to the highest concentration of oxyfluorfen at 20 °C. Looking at the temperature as a single stressor, the organisms exposed to 25 °C revealed a significant increase in the TBARS level, suggesting potential LPO and explaining the great mortality at this condition.

5.
Mar Drugs ; 21(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37504914

RESUMEN

Seaweeds are abundant sources of diverse bioactive compounds with various properties and mechanisms of action. These compounds offer protective effects, high nutritional value, and numerous health benefits. Seaweeds are versatile natural sources of metabolites applicable in the production of healthy food, pharmaceuticals, cosmetics, and fertilizers. Their biological compounds make them promising sources for biotechnological applications. In nature, hydrocolloids are substances which form a gel in the presence of water. They are employed as gelling agents in food, coatings and dressings in pharmaceuticals, stabilizers in biotechnology, and ingredients in cosmetics. Seaweed hydrocolloids are identified in carrageenan, alginate, and agar. Carrageenan has gained significant attention in pharmaceutical formulations and exhibits diverse pharmaceutical properties. Incorporating carrageenan and natural polymers such as chitosan, starch, cellulose, chitin, and alginate. It holds promise for creating biodegradable materials with biomedical applications. Alginate, a natural polysaccharide, is highly valued for wound dressings due to its unique characteristics, including low toxicity, biodegradability, hydrogel formation, prevention of bacterial infections, and maintenance of a moist environment. Agar is widely used in the biomedical field. This review focuses on analysing the therapeutic applications of carrageenan, alginate, and agar based on research highlighting their potential in developing innovative drug delivery systems using seaweed phycocolloids.


Asunto(s)
Cosméticos , Algas Marinas , Carragenina , Preparaciones Farmacéuticas , Agar , Polisacáridos/farmacología , Alginatos/farmacología , Coloides
6.
J Exp Biol ; 226(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326253

RESUMEN

Seabirds have evolved several life-history characteristics to help buffer environmental stochasticity. However, particularly during the breeding season, seabirds may be affected by reductions in prey availability and localised oceanographic conditions caused by variations in the environment. The increase in sea surface temperature, triggered by accelerated global warming, is impairing phytoplankton production of omega-3 fatty acids (FAs). Here, we assessed the ecological role of omega-3 FAs on chick development and subsequently on breeder foraging behaviour in two closely related shearwater species foraging in contrasting marine environments. We supplemented chicks with omega-3 FA pills or with control placebo pills and monitored chick growth, chick health status and breeder at-sea foraging behaviour using global positioning system devices. We found that omega-3 chick supplementation reduced the 95% kernel utilization distribution of short trips of Cape Verde shearwaters, but overall, breeders kept a similar foraging pattern between treatments, potentially influenced by predictable prey patches off the West African coast. In contrast, for Cory's shearwaters, the parents of the omega-3 group greatly reduced the foraging effort. This suggests that the proximity to productive prey patches around the colony may help birds to adjust their effort and, therefore, energy expenditure, to changes in the development of their offspring, as driven by their nutritional status. Overall, our results suggest a link between a chick diet enriched in omega-3 FAs and parental foraging effort, providing insight into their ability to cope with a changing and increasingly stochastic marine environment.


Asunto(s)
Pollos , Dieta , Animales , Dieta/veterinaria , Suplementos Dietéticos , Conducta Alimentaria , Estado Nutricional
7.
Mar Drugs ; 21(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37233455

RESUMEN

Polyphenols are beneficial natural compounds with antioxidant properties that have recently gain a lot of interest for their potential therapeutic applications. Marine polyphenols derived from marine macroalgae have been discovered to possess interesting antioxidant properties; therefore, these compounds can be included in several areas of drug development. Authors have considered the use of polyphenol extracts from seaweeds as neuroprotective antioxidants in neurodegenerative diseases. Marine polyphenols may slow the progression and limit neuronal cell loss due to their antioxidant activity; therefore, the use of these natural compounds would improve the quality of life for patients affected with neurodegenerative diseases. Marine polyphenols have distinct characteristics and potential. Among seaweeds, brown algae are the main sources of polyphenols, and present the highest antioxidant activity in comparison to red algae and green algae. The present paper collects the most recent in vitro and in vivo evidence from investigations regarding polyphenols extracted from seaweeds that exhibit neuroprotective antioxidant activity. Throughout the review, oxidative stress in neurodegeneration and the mechanism of action of marine polyphenol antioxidant activity are discussed to evidence the potential of algal polyphenols for future use in drug development to delay cell loss in patients with neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Algas Marinas , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Calidad de Vida , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
8.
Sci Total Environ ; 876: 162737, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36907391

RESUMEN

Under the current scenario of global warming, it is ecologically relevant to understand how increased temperature influences the combined toxicity of pesticides to aquatic species. Hence, this work aims to: a) determine the temperature effect (15 °C, 20 °C and 25 °C) on the toxicity of two pesticides (oxyfluorfen and Copper (Cu)), on the growth of Thalassiosira weissflogii; b) assess whether temperature affects the type of toxicity interaction between these chemicals; and c) assess the temperature effect on biochemical responses (fatty acids (FA) and sugar profiles) of the pesticides on T. weissflogii. Temperature increased the tolerance of the diatoms to the pesticides with EC50 values between 3.176 and 9.929 µg L-1 for oxyfluorfen and 42.50-230.75 µg L-1 for Cu, respectively, at 15 °C and 25 °C. The mixtures toxicity was better described by the IA model, but temperature altered the type of deviation from dose ratio (15 °C and 20 °C) to antagonism (25 °C). Temperature, as well as the pesticide concentrations, affected the FA and sugar profiles. Increased temperature increased saturated FA and decreased unsaturated FA; it also affected the sugar profiles with a pronounced minimum at 20 °C. Results highlight effects on the nutritional value of these diatoms, with potential repercussion on food webs.


Asunto(s)
Diatomeas , Plaguicidas , Plaguicidas/toxicidad , Diatomeas/fisiología , Calentamiento Global , Azúcares
9.
Mar Drugs ; 21(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976212

RESUMEN

Antibiotics are used to prevent and treat bacterial infections. After a prolonged use of antibiotics, it may happen that bacteria adapt to their presence, developing antibiotic resistance and bringing up health complications. Nowadays, antibiotic resistance is one of the biggest threats to global health and food security; therefore, scientists have been searching for new classes of antibiotic compounds which naturally express antimicrobial activity. In recent decades, research has been focused on the extraction of plant compounds to treat microbial infections. Plants are potential sources of biological compounds that express several biological functions beneficial for our organism, including antimicrobial activity. The high variety of compounds of natural origin makes it possible to have a great bioavailability of antibacterial molecules to prevent different infections. The antimicrobial activity of marine plants, also called seaweeds or macroalgae, for both Gram-positive and Gram-negative, and several other strains infective for humans, has been proven. The present review presents research focused on the extraction of antimicrobial compounds from red and green macroalgae (domain Eukarya, kingdom Plantae). Nevertheless, further research is needed to verify the action of macroalgae compounds against bacteria in vitro and in vivo, to be involved in the production of safe and novel antibiotics.


Asunto(s)
Antiinfecciosos , Chlorophyta , Rhodophyta , Algas Marinas , Humanos , Plantas Comestibles , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Bacterias , Extractos Vegetales/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-36834400

RESUMEN

In recent decades, pollution levels have increased, mainly as a result of the intensive anthropogenic activities such industrial development, intensive agricultural practices, among others. The impact of metals and organic contaminants is, nowadays, a great concern to the scientific and political communities. Copper compounds are the main sold pesticides in Europe, as well as herbicides, including glyphosate. Diphenyl ethers are the second ones most sold. Glyphosate and copper compounds are intensively studied, but the opposite is seen in the case of diphenyl ethers, including fluorinated pesticides (e.g., oxyfluorfen). Some research has been performed to increase the knowledge about these contaminants, daily inputted on the aquatic systems and with dangerous effects at physical and biochemical levels on the organisms. A wide range of biomarkers (e.g., growth, survival, reproductive success, enzymatic activity, lipid metabolism) has been applied to determine the potential effects in many species. This review intends to: (a) perform a compilation of the knowledge in previous research about the action mode of organic (fluorinated-based herbicide) and inorganic (copper-based pesticides) contaminants; (b) carry out an information survey about the lethal and sub-lethal effects of the fluorinated-based pesticides, namely the oxyfluorfen and the copper-based pesticides, on aquatic species from different trophic levels, according to in vitro and in vivo studies; (c) understand the impact of oxyfluorfen and copper-based pesticides, considering their effects reported in in vitro studies and, simultaneously, the authorized concentrations by legal organizations and the effective concentrations of each pollutant found in the environment. The literature analyzed revealed noxious effects of Cu and oxyfluorfen to aquatic organisms, including freshwater and marine species, even when exposed to the reference as well as to environmental concentrations, thus highlighting the importance of more monitoring and ecotoxicological studies, to chemical pollutants and different species from different ecological niches, to sustain and improve the legislation.


Asunto(s)
Contaminantes Ambientales , Herbicidas , Plaguicidas , Contaminantes Químicos del Agua , Plaguicidas/análisis , Cobre , Contaminantes Químicos del Agua/química , Éteres Difenilos Halogenados
11.
Artículo en Inglés | MEDLINE | ID: mdl-36674083

RESUMEN

Wildfires constitute a source of contamination to both freshwater and marine ecosystems. This study aimed to compare the antioxidant defense response of the freshwater clam Corbicula fluminea and the marine cockle (Cerastoderma edule) to wildfire ash exposure and the concomitant metal body burden. Organisms were exposed to different concentrations (0%, 12.5%, 25%, 50%, and 100%) of aqueous extracts of Eucalypt ash (AEAs) from a moderate-to-high severity wildfire. The activity of various enzymes, as well as lipid peroxidation, protein content, and metal body burden, were determined after 96 h of exposure. A significant increase in the protein content of soft tissues was observed for C. edule at AEA concentrations ≥ 25%, unlike for C. fluminea. Similarly, significant effects on lipid peroxidation were observed for cockles, but not for clams. For both species, a significant effect in the total glutathione peroxidase activity was observed at AEA concentrations ≥ 25%. Relative to the control, AEAs-exposed clams showed higher Cd content, whereas AEAs-exposed cockles showed higher Cu content, thus exhibiting different responses to the exposure to wildfire ash. The susceptibility of bivalves to ashes, at environmentally relevant concentrations, raises concern about the effects of post-fire runoff to bivalve species.


Asunto(s)
Corbicula , Contaminantes Químicos del Agua , Incendios Forestales , Animales , Antioxidantes/metabolismo , Ecosistema , Carga Corporal (Radioterapia) , Metales/toxicidad , Metales/metabolismo , Corbicula/metabolismo , Proteínas , Agua Dulce , Contaminantes Químicos del Agua/análisis
12.
Foods ; 11(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36076839

RESUMEN

The use of seaweed for therapeutic purposes is ancient, but only in the last decade, with advanced technologies, has it been possible to extract seaweed's bioactive compounds and test their potential properties. Algal metabolites possess nutritional properties, but they also exhibit antioxidant, antimicrobial, and antiviral activities, which allow them to be involved in several pharmaceutical applications. Seaweeds have been incorporated since ancient times into diets as a whole food. With the isolation of particular seaweed compounds, it would be possible to develop new types of food with therapeutically properties. Polysaccharides make up the majority of seaweed biomass, which has triggered an increase in interest in using seaweed for commercial purposes, particularly in the production of agar, carrageenan, and alginate. The bio-properties of polysaccharides are strictly dependent to their chemical characteristics and structure, which varies depending on the species, their life cycles, and other biotic and abiotic factors. Through this review, techniques for seaweed polysaccharides extraction are reported, with studies addressing the advantages for human health from the incorporation of algal compounds as dietary supplements and food additives.

13.
Aquat Toxicol ; 250: 106245, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35907386

RESUMEN

Wildfires are a social and environmental concern to the world due to their many adverse effects, including risk to the public health and security, economic damages in prevention and fight, ecosystems pollution, land usage sustainability, and biodiversity. In the Mediterranean region, these events have increased in the last years. Although several studies evaluated the impacts of the wildfires on the structure and function of the ecosystems and their communities, there is a lack of information at the biochemical level beyond the toxicological effects to the organisms. So, aiming to evaluate the potential toxic and biochemical effects of pine and eucalypt ash from high and low severity burned areas in the aquatic environments, L. minor growth, fatty acid and carbohydrate profiles were studied. Data showed that the wildfires ash from high severity burned areas are more toxic, with a higher growth inhibition than when exposed to ash from low severity burned areas. Considering the ash from low severity burned areas, eucalypt ash revealed to be more noxious to the macrophyte than pine ash. Furthermore, it was observed a decrease in the diversity and abundance of fatty acids content, comparing with the control. An opposite trend was observed in carbohydrates which increased with the organisms' exposure to almost all ash types, except in case of the organisms exposed to eucalypt ash from high severity burned areas, where carbohydrate content decreased.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Incendios Forestales , Carbohidratos , Ecosistema , Contaminantes Químicos del Agua/toxicidad
14.
Mar Drugs ; 20(6)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736188

RESUMEN

In the last decades, the interest in seaweed has significantly increased. Bioactive compounds from seaweed's currently receive major attention from pharmaceutical companies as they express several interesting biological activities which are beneficial for humans. The structural diversity of seaweed metabolites provides diverse biological activities which are expressed through diverse mechanisms of actions. This review mainly focuses on the antiviral activity of seaweed's extracts, highlighting the mechanisms of actions of some seaweed molecules against infection caused by different types of enveloped viruses: influenza, Lentivirus (HIV-1), Herpes viruses, and coronaviruses. Seaweed metabolites with antiviral properties can act trough different pathways by increasing the host's defense system or through targeting and blocking virus replication before it enters host cells. Several studies have already established the large antiviral spectrum of seaweed's bioactive compounds. Throughout this review, antiviral mechanisms and medical applications of seaweed's bioactive compounds are analyzed, suggesting seaweed's potential source of antiviral compounds for the formulation of novel and natural antiviral drugs.


Asunto(s)
Algas Marinas , Virus , Antivirales/química , Antivirales/farmacología , Humanos , Algas Marinas/química , Replicación Viral
15.
Mar Drugs ; 20(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35736190

RESUMEN

In recent years, an increased interest in marine macroalgae bioactive compounds has been recorded due to their benefits to human health and welfare. Several of their bioactivities have been demonstrated, such as anti-inflammatory, antioxidant, anticarcinogenic, antibacterial and antiviral behavior. However, there still lacks a clear definition regarding how these compounds exert their bioactive properties. Of all the bioactive compounds derived from marine macroalgae, attention has been focused on phenolic compounds, specifically in phlorotannins, due to their potential for biomedical applications. Phlorotannins are a diverse and wide group of phenolic compounds, with several structural variations based on the monomer phloroglucinol. Among the diverse phlorotannin structures, the eckol-family of phlorotannins demonstrates remarkable bioactivity, notably their anti-tumoral properties. However, the molecular mechanisms by which this activity is achieved remain elusive and sparse. This review focuses on the described molecular mechanisms of anti-tumoral effects by the eckol family of compounds and the future prospects of these molecules for potential application in oncology therapies.


Asunto(s)
Neoplasias , Phaeophyceae , Algas Marinas , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Phaeophyceae/química , Fenoles , Floroglucinol/química , Algas Marinas/química , Taninos/química
16.
Sci Total Environ ; 836: 155613, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35523349

RESUMEN

Physiological changes were explored in fatty acids (FA) and carbohydrate (CHO) composition in the shredder Calamoceras marsupus larvae (Trichoptera) and leaf litter (C. marsupus food) exposed to copper and uranium under natural and experimental conditions. We measured FA and CHO content in leaf litter and larvae specimens from reference and impacted streams, and exposed for 5 weeks to four realistic environmental concentrations of copper (35 µg L-1 and 70 µg L-1) and uranium (25 µg L-1 and 50 µg L-1). Regarding FA, (1) leaf litter had a reduced polyunsaturated FA (PUFA) content in metal treatments, s (14 to 33% of total FA), compared to natural conditions (≥39% of total FA). Leaf litter exposed to uranium also differed in saturated FA (SFA) composition, with lower values in natural conditions and higher values under low uranium concentrations. (2) C. marsupus had/showed low PUFA content under Cu and U exposure, particularly in high uranium concentrations. Detritivores also decreased in PUFA under exposure to both metals, particularly in high uranium concentrations. On the other hand, (1) microorganisms of the biofilm colonizing leaf litter differed in CHO composition between natural (impacted and reference) and experimental conditions, with glucose and galactose being consistently the most abundant sugars, found in different amounts under copper or uranium exposure; (2) CHO of detritivores showed similar high galactose and fucose concentrations in contaminated streams and high copper treatments, whereas low copper treatment showed distinct CHO profiles, with higher mannose, glucose, arabinose, and fucose concentrations. Our study provides evidence of metal exposure effects on FA and CHO contents at different trophic levels, which might alter the quality of food flow in trophic webs.


Asunto(s)
Alnus , Uranio , Animales , Cobre/toxicidad , Ácidos Grasos , Fucosa , Galactosa , Glucosa , Insectos , Larva , Hojas de la Planta , Uranio/toxicidad
17.
Biomol Concepts ; 13(1): 89-102, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35247041

RESUMEN

Recently, there has been increased interest in the development of novel antimicrobial compounds for utilization in a variety of sectors, including pharmaceutical, biomedical, textile, and food. The use, overuse, and misuse of synthetic compounds or derivatives have led to an increase of pathogenic microorganisms gaining resistance to the traditional antimicrobial therapies, which has led to an increased need for alternative therapeutic strategies. Seaweed are marine organisms that can be cultivated sustainably, and they are a source of polar molecules, such as pigments and phenolic compounds, which demonstrated antimicrobial potential. This review focuses on current knowledge about pigments and phenolic compounds isolated from seaweeds, their chemical characteristics, antimicrobial bioactivity, and corresponding mechanism of action.


Asunto(s)
Antiinfecciosos , Algas Marinas , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Algas Marinas/química
18.
Mar Drugs ; 20(2)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35200670

RESUMEN

Nowadays, seaweeds are widely involved in biotechnological applications. Due to the variety of bioactive compounds in their composition, species of phylum Ochrophyta, class Phaeophyceae, phylum Rhodophyta and Chlorophyta are valuable for the food, cosmetic, pharmaceutical and nutraceutical industries. Seaweeds have been consumed as whole food since ancient times and used to treat several diseases, even though the mechanisms of action were unknown. During the last decades, research has demonstrated that those unique compounds express beneficial properties for human health. Each compound has peculiar properties (e.g., antioxidant, antimicrobial, antiviral activities, etc.) that can be exploited to enhance human health. Seaweed's extracted polysaccharides are already involved in the pharmaceutical industry, with the aim of replacing synthetic compounds with components of natural origin. This review aims at a better understanding of the recent uses of algae in drug development, with the scope of replacing synthetic compounds and the multiple biotechnological applications that make up seaweed's potential in industrial companies. Further research is needed to better understand the mechanisms of action of seaweed's compounds and to embrace the use of seaweeds in pharmaceutical companies and other applications, with the final scope being to produce sustainable and healthier products.


Asunto(s)
Productos Biológicos/farmacología , Polisacáridos/farmacología , Algas Marinas/química , Animales , Productos Biológicos/aislamiento & purificación , Biotecnología , Desarrollo de Medicamentos , Humanos , Polisacáridos/aislamiento & purificación
19.
J Hazard Mater ; 429: 128320, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114454

RESUMEN

In forested streams, leaf litter decomposition is a vital ecosystem process, governed primarily by aquatic hyphomycetes. These fungi are crucial mediators of nutrients and energy to invertebrates and higher trophic levels. Very little information is available on the impact of low concentrations of different sizes of nanoplastic particles (NPPs) on leaf litter decomposition and aquatic hyphomycetes communities. Besides, NPPs impact on leaf litter nutritional quality and invertebrate feeding behaviour is unknown. We conducted a microcosm assay with varying concentrations (0-25 µg L-1) of small (100 nm; SNPPs) and large (1000 nm; LNPPs) plastic particles to assess their impact on leaf litter decomposition, sporulation rates and community structure of aquatic hyphomycetes. Furthermore, leaf litter was retrieved and fed to invertebrates to assess feeding rates. Our results indicated that leaf litter decomposition, fungal sporulation and abundance were significantly affected by NPPs concentrations and sizes. By contrast, leaf litter nutritional quality was impacted only by sizes. The NPPs, particularly SNPPs, augmented leaf litter polyunsaturated fatty acids (18-31%), consequently improving food quality; however, invertebrates' feeding rates were not impacted. Overall, our study provides novel insights on the risks posed by NPPs with pronounced impact at the basal trophic level.


Asunto(s)
Ecosistema , Ríos , Animales , Calidad de los Alimentos , Invertebrados , Microplásticos , Hojas de la Planta/microbiología , Ríos/química
20.
Integr Environ Assess Manag ; 18(5): 1148-1161, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35225423

RESUMEN

Because the world's population is increasing, science-based policies are needed to promote sustainable global development. It is important to maintain and restore the environment and help human society overcome the risks from industrialization and unsustainable exponential growth. In recent years, many studies have highlighted that macroalgae represent a key marine resource for ecological and sustainable living, thus helping to address today's global problems, such as water pollution, ocean acidification, and global warming. Macroalgae show the potential to provide innovative, ecofriendly, and nutritious food sources and natural compounds for various industries, such as biomedical, food, agricultural, and pharmaceutical industries. This review discusses how macroalgae can help us today and how they can promote a more sustainable way of life in the future. It also discusses the potential danger for ecosystems and the global population if these organisms are not part of the solution but part of the problem. Integr Environ Assess Manag 2022;18:1148-1161. © 2022 SETAC.


Asunto(s)
Algas Marinas , Desarrollo Sostenible , Ecosistema , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...