Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proteins ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171358

RESUMEN

Several clades of luminescent bacteria are known currently. They all contain similar lux operons, which include the genes luxA and luxB encoding a heterodimeric luciferase. The aldehyde oxygenation reaction is presumed to be catalyzed primarily by the subunit LuxA, whereas LuxB is required for efficiency and stability of the complex. Recently, genomic analysis identified a subset of bacterial species with rearranged lux operons lacking luxB. Here, we show that the product of the luxA gene from the reduced luxACDE operon of Enhygromyxa salina is luminescent upon addition of aldehydes both in vivo in Escherichia coli and in vitro. Overall, EsLuxA is much less bright compared with luciferases from Aliivibrio fischeri (AfLuxAB) and Photorhabdus luminescens (PlLuxAB), and most active with medium-chain C4-C9 aldehydes. Crystal structure of EsLuxA determined at the resolution of 2.71 Å reveals a (ß/α)8 TIM-barrel fold, characteristic for other bacterial luciferases, and the protein preferentially forms a dimer in solution. The mobile loop residues 264-293, which form a ß-hairpin or a coil in Vibrio harveyi LuxA, form α-helices in EsLuxA. Phylogenetic analysis shows EsLuxA and related proteins may be bacterial protoluciferases that arose prior to duplication of the luxA gene and its speciation to luxA and luxB in the previously described luminescent bacteria. Our work paves the way for the development of new bacterial luciferases that have an advantage of being encoded by a single gene.

2.
Photochem Photobiol Sci ; 20(12): 1645-1656, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34796467

RESUMEN

Light-oxygen-voltage (LOV) domains are common photosensory modules that found many applications in fluorescence microscopy and optogenetics. Here, we show that the Chloroflexus aggregans LOV domain can bind different flavin species (lumichrome, LC; riboflavin, RF; flavin mononucleotide, FMN; flavin adenine dinucleotide, FAD) during heterologous expression and that its physicochemical properties depend strongly on the nature of the bound flavin. We show that whereas the dissociation constants for different chromophores are similar, the melting temperature of the protein reconstituted with single flavin species varies from ~ 60 °C for LC to ~ 81 °C for FMN, and photobleaching half-times vary almost 100-fold. These observations serve as a caution for future studies of LOV domains in non-native conditions yet raise the possibility of fine-tuning various properties of LOV-based fluorescent probes and optogenetic tools by manipulating the chromophore composition.


Asunto(s)
Chloroflexus , Oxígeno , Mononucleótido de Flavina , Flavina-Adenina Dinucleótido , Riboflavina
3.
Biochem Biophys Res Commun ; 567: 143-147, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34153684

RESUMEN

LOV domains are widespread photosensory modules that have also found applications in fluorescence microscopy, optogenetics, and light-driven generation of reactive oxygen species. Many of these applications require stable proteins with altered spectra. Here, we report a flavin-based fluorescent protein CisFbFP derived from Chloroflexus islandicus LOV domain-containing protein. We show that CisFbFP is thermostable, and its absorption and fluorescence spectra are red-shifted for ∼6 nm, which has not been observed for other cysteine-substituted natural LOV domains. We also provide a crystallographic structure of CisFbFP at the resolution of 1.2 Å that reveals alterations in the active site due to replacement of conservative asparagine with a serine. Finally, we discuss the possible effects of presence of cis-proline in the Aß-Bß loop on the protein's structure and stability. The findings provide the basis for engineering and color tuning of LOV-based tools for molecular biology.


Asunto(s)
Proteínas Bacterianas/química , Chloroflexus/química , Flavinas/química , Proteínas Luminiscentes/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Dominios Proteicos
4.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072989

RESUMEN

Under anaerobic conditions, bacteria may utilize nitrates and nitrites as electron acceptors. Sensitivity to nitrous compounds is achieved via several mechanisms, some of which rely on sensor histidine kinases (HKs). The best studied nitrate- and nitrite-sensing HKs (NSHKs) are NarQ and NarX from Escherichia coli. Here, we review the function of NSHKs, analyze their natural diversity, and describe the available structural information. In particular, we show that around 6000 different NSHK sequences forming several distinct clusters may now be found in genomic databases, comprising mostly the genes from Beta- and Gammaproteobacteria as well as from Bacteroidetes and Chloroflexi, including those from anaerobic ammonia oxidation (annamox) communities. We show that the architecture of NSHKs is mostly conserved, although proteins from Bacteroidetes lack the HAMP and GAF-like domains yet sometimes have PAS. We reconcile the variation of NSHK sequences with atomistic models and pinpoint the structural elements important for signal transduction from the sensor domain to the catalytic module over the transmembrane and cytoplasmic regions spanning more than 200 Å.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas , Histidina Quinasa , Proteínas de la Membrana , Nitratos/metabolismo , Nitritos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Histidina Quinasa/química , Histidina Quinasa/clasificación , Histidina Quinasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Dominios Proteicos
5.
Proteins ; 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33774867

RESUMEN

Light-oxygen-voltage (LOV) domains are widespread photosensory modules that can be used in fluorescence microscopy, optogenetics and controlled production of reactive oxygen species. All of the currently known LOV domains have absorption maxima in the range of ~440 to ~450 nm, and it is not clear whether they can be shifted significantly using mutations. Here, we have generated a panel of LOV domain variants by mutating the key chromophore-proximal glutamine aminoacid of a thermostable flavin based fluorescent protein CagFbFP (Gln148) to asparagine, aspartate, glutamate, histidine, lysine and arginine. Absorption spectra of all of the mutants are blue-shifted, with the maximal shift of 8 nm observed for the Q148H variant. While CagFbFP and its Q148N/D/E variants are not sensitive to pH, Q148H/K/R reveal a moderate red shift induced byacidic pH. To gain further insight, we determined high resolution crystal structures of all of the mutants studied at the resolutions from 1.07 Å for Q148D to 1.63 Å for Q148R. Whereas in some of the variants, the aminoacid 148 remains in the vicinity of the flavin, in Q148K, Q148R and partially Q148D, the C-terminus of the protein unlatches and the side chain of the residue 148 is reoriented away from the chromophore. Our results explain the absence of color shifts from replacing Gln148 with charged aminoacids and pave the way for rational design of color-shifted flavin based fluorescent proteins.

6.
ACS Synth Biol ; 10(1): 72-83, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325704

RESUMEN

Protein-fragment complementation assays are used ubiquitously for probing protein-protein interactions. Most commonly, the reporter protein is split in two parts, which are then fused to the proteins of interest and can reassemble and provide a readout if the proteins of interest interact with each other. The currently known split fluorescent proteins either can be used only in aerobic conditions and assemble irreversibly, or require addition of exogenous chromophores, which complicates the design of experiments. In recent years, light-oxygen-voltage (LOV) domains of several photoreceptor proteins have been developed into flavin-based fluorescent proteins (FbFPs) that, under some circumstances, can outperform commonly used fluorescent proteins such as GFP. Here, we show that CagFbFP, a small thermostable FbFP based on a LOV domain-containing protein from Chloroflexus aggregans, can serve as a split fluorescent reporter. We use the available genetic and structural information to identify three loops between the conserved secondary structure elements, Aß-Bß, Eα-Fα, and Hß-Iß, that tolerate insertion of flexible poly-Gly/Ser segments and eventually splitting. We demonstrate that the designed split pairs, when fused to interacting proteins, are fluorescent in vivo in E. coli and human cells and have low background fluorescence. Our results enable probing protein-protein interactions in anaerobic conditions without using exogenous fluorophores and provide a basis for further development of LOV and PAS (Per-Arnt-Sim) domain-based fluorescent reporters and optogenetic tools.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavinas/metabolismo , Colorantes Fluorescentes/química , Proteínas Bacterianas/genética , Calcio/química , Chloroflexus/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Flavinas/química , Transferencia Resonante de Energía de Fluorescencia , Dominios Proteicos/genética , Pliegue de Proteína , Mapas de Interacción de Proteínas
7.
Photochem Photobiol Sci ; 18(7): 1793-1805, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31116222

RESUMEN

Light-Oxygen-Voltage (LOV) domains are conserved parts of photoreceptors in plants, bacteria and fungi that bind flavins as chromophores and detect blue light. In the past, LOV domain variants have been developed as fluorescent reporter proteins (called flavin-based fluorescent proteins; FbFPs), which due to their ability to fluoresce under anaerobic conditions, fast folding kinetics and a small size of ∼12-16 kDa are a promising reporter system for quantitative real-time analysis of biological processes. Here, we present a small thermostable flavin-based fluorescent protein CagFbFP derived from a soluble LOV domain-containing histidine kinase from the thermophilic bacterium Chloroflexus aggregans. CagFbFP is composed of 107 amino acids with a molecular weight of 11.6 kDa and consists only of the conserved LOV core domain. The protein is thermostable with a melting point of about 68 °C. It crystallizes easily and its crystals diffract to 1.07 Å. Both the crystal structure and small angle scattering data show that the protein is a dimer. Unexpectedly, glutamine 148, which in LOV photoreceptor proteins is the key residue responsible for signal transduction, occupies two conformations. Molecular dynamics simulations show that the two conformations interconvert rapidly. The crystal structure of the wild-type Chloroflexus aggregans LOV domain determined at 1.22 Å resolution confirmed the presence of two alternative conformations of the glutamine 148 side chain. Overall, this protein, due to its stability and ease of crystallization, appears to be a promising model for ultra-high resolution structural studies of LOV domains and for application as a fluorescent reporter.


Asunto(s)
Proteínas Bacterianas/química , Chloroflexus/metabolismo , Flavinas/química , Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Peso Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Espectrometría de Fluorescencia , Temperatura de Transición , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA