Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 19: 204-213, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31377665

RESUMEN

The endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is a complex cellular response to ER protein misfolding that involves transcriptional regulatory branches and a PERK-mediated translational regulatory branch. Here we revealed that amino acid biosynthesis regulation is coupled to protein synthesis demands during ER stress. Specifically, we demonstrated that the UPR leads to PERK-dependent induction in the biosynthesis of specific amino acids, and to upregulation of their corresponding tRNA synthetases. Furthermore, we found that sequences of UPR-upregulated proteins are significantly enriched with these UPR-induced amino acids. Interestingly, whereas the UPR leads to repression of ER target proteins, we showed that secreted proteins tended to escape this repression and were highly enriched for the UPR-induced amino acids. Our results unravel coordination between amino acid supply, namely, biosynthesis and tRNA loading, and demand from UPR-induced proteins under ER stress, thus revealing an additional regulatory layer of protein synthesis.

2.
Neuron ; 102(5): 1009-1024.e8, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31047779

RESUMEN

Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bi-directional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3-CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.


Asunto(s)
Calcio/metabolismo , Crotonatos/farmacología , Epilepsias Mioclónicas/metabolismo , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Convulsiones/metabolismo , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Toluidinas/farmacología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Homeostasis , Hidroxibutiratos , Ratones , Mitocondrias/metabolismo , Nitrilos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética
3.
Sci Rep ; 9(1): 4330, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867432

RESUMEN

The UPR (Unfolded Protein Response) is a well-orchestrated response to ER protein folding and processing overload, integrating both transcriptional and translational outputs. Its three arms in mammalian cells, the PERK translational response arm, together with the ATF6 and IRE1-XBP1-mediated transcriptional arms, have been thoroughly investigated. Using ribosome footprint profiling, we performed a deep characterization of gene expression programs involved in the early and late ER stress responses, within WT or PERK -/- Mouse Embryonic Fibroblasts (MEFs). We found that both repression and activation gene expression programs, affecting hundreds of genes, are significantly hampered in the absence of PERK. Specifically, PERK -/- cells do not show global translational inhibition, nor do they specifically activate early gene expression programs upon short exposure to ER stress. Furthermore, while PERK -/- cells do activate/repress late ER-stress response genes, the response is substantially weaker. Importantly, we highlight a widespread PERK-dependent repression program, consisting of ER targeted proteins, including transmembrane proteins, glycoproteins, and proteins with disulfide bonds. This phenomenon occurs in various different cell types, and has a major translational regulatory component. Moreover, we revealed a novel interplay between PERK and the XBP1-ATF6 arms of the UPR, whereby PERK attenuates the expression of a specific subset of XBP1-ATF6 targets, further illuminating the complexity of the integrated ER stress response.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Estrés del Retículo Endoplásmico/genética , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Células 3T3 NIH , Biosíntesis de Proteínas , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/genética
4.
Mol Syst Biol ; 13(12): 956, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196508

RESUMEN

Metabolic alterations play an important role in cancer and yet, few metabolic cancer driver genes are known. Here we perform a combined genomic and metabolic modeling analysis searching for metabolic drivers of colorectal cancer. Our analysis predicts FUT9, which catalyzes the biosynthesis of Ley glycolipids, as a driver of advanced-stage colon cancer. Experimental testing reveals FUT9's complex dual role; while its knockdown enhances proliferation and migration in monolayers, it suppresses colon cancer cells expansion in tumorspheres and inhibits tumor development in a mouse xenograft models. These results suggest that FUT9's inhibition may attenuate tumor-initiating cells (TICs) that are known to dominate tumorspheres and early tumor growth, but promote bulk tumor cells. In agreement, we find that FUT9 silencing decreases the expression of the colorectal cancer TIC marker CD44 and the level of the OCT4 transcription factor, which is known to support cancer stemness. Beyond its current application, this work presents a novel genomic and metabolic modeling computational approach that can facilitate the systematic discovery of metabolic driver genes in other types of cancer.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Biología Computacional/métodos , Fucosiltransferasas/metabolismo , Algoritmos , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Fucosiltransferasas/genética , Técnicas de Silenciamiento del Gen , Genes Supresores de Tumor , Genómica , Humanos , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
5.
J Am Heart Assoc ; 6(5)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-28528324

RESUMEN

BACKGROUND: The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. METHODS AND RESULTS: We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra, is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1-deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P=0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P=0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. CONCLUSIONS: The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease.


Asunto(s)
Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Homeostasis , Subunidad alfa1 del Receptor de Interleucina-13/genética , Miocardio/metabolismo , ARN/genética , Animales , Western Blotting , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Subunidad alfa1 del Receptor de Interleucina-13/biosíntesis , Ratones , Miocardio/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Remodelación Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA