RESUMEN
We investigated the biological significance of microRNA-126 (miR-126) expression in patients with atrial fibrillation (AF) and/or heart failure (HF) to examine the possible mechanism of miR-126-dependent AF and development of HF. A total of 103 patients were divided into three groups: AF group (18 men and 17 women, mean age: 65.62±12.72 years), HF group (17 men and 15 women, mean age: 63.95±19.71 years), and HF-AF group (20 men and 16 women, mean age: 66.56±14.37 years). Quantitative real-time PCR was used to measure relative miR-126 expression as calculated by the 2−ΔΔCt method. miR-126 was frequently downregulated in the 3 patient groups compared with controls. This reduction was significantly lower in permanent and persistent AF patients than in those with paroxysmal AF (P<0.05, t-test). Moreover, miR-126 expression was markedly lower in the HF-AF group compared with the AF and HF groups. The 3 patient groups had higher N-terminal prohormone brain natriuretic peptide (NT-proBNP) levels, lower left ventricular ejection fraction (LVEF), larger left atrial diameter, and higher cardiothoracic ratio compared with controls. There were significant differences in NT-proBNP levels and LVEF among the AF, HF, and HF-AF groups. Pearson correlation analysis showed that relative miR-126 expression was positively associated with LVEF, logarithm of NT-proBNP, left atrial diameter, cardiothoracic ratio, and age in HF-AF patients. Multiple linear regression analysis showed that miR-126 expression was positively correlated with LVEF, but negatively correlated with the logarithm of NT-pro BNP and the cardiothoracic ratio (all P<0.05). Serum miR-126 levels could serve as a potential candidate biomarker for evaluating the severity of AF and HF. However, to confirm these results, future studies with a larger and diverse patient population are necessary.
Asunto(s)
Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fibrilación Atrial/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Fibrilación Atrial/diagnóstico , Función Atrial/fisiología , Biomarcadores/metabolismo , Insuficiencia Cardíaca/diagnóstico , Modelos Lineales , Péptido Natriurético Encefálico/sangre , Pronóstico , Fragmentos de Péptidos/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Función Ventricular Izquierda/fisiologíaRESUMEN
We investigated the biological significance of microRNA-126 (miR-126) expression in patients with atrial fibrillation (AF) and/or heart failure (HF) to examine the possible mechanism of miR-126-dependent AF and development of HF. A total of 103 patients were divided into three groups: AF group (18 men and 17 women, mean age: 65.62±12.72 years), HF group (17 men and 15 women, mean age: 63.95±19.71 years), and HF-AF group (20 men and 16 women, mean age: 66.56±14.37 years). Quantitative real-time PCR was used to measure relative miR-126 expression as calculated by the 2-ΔΔCt method. miR-126 was frequently downregulated in the 3 patient groups compared with controls. This reduction was significantly lower in permanent and persistent AF patients than in those with paroxysmal AF (P<0.05, t-test). Moreover, miR-126 expression was markedly lower in the HF-AF group compared with the AF and HF groups. The 3 patient groups had higher N-terminal prohormone brain natriuretic peptide (NT-proBNP) levels, lower left ventricular ejection fraction (LVEF), larger left atrial diameter, and higher cardiothoracic ratio compared with controls. There were significant differences in NT-proBNP levels and LVEF among the AF, HF, and HF-AF groups. Pearson correlation analysis showed that relative miR-126 expression was positively associated with LVEF, logarithm of NT-proBNP, left atrial diameter, cardiothoracic ratio, and age in HF-AF patients. Multiple linear regression analysis showed that miR-126 expression was positively correlated with LVEF, but negatively correlated with the logarithm of NT-pro BNP and the cardiothoracic ratio (all P<0.05). Serum miR-126 levels could serve as a potential candidate biomarker for evaluating the severity of AF and HF. However, to confirm these results, future studies with a larger and diverse patient population are necessary.
Asunto(s)
Fibrilación Atrial/metabolismo , Insuficiencia Cardíaca/metabolismo , MicroARNs/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Fibrilación Atrial/diagnóstico , Función Atrial/fisiología , Biomarcadores/metabolismo , Femenino , Insuficiencia Cardíaca/diagnóstico , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Función Ventricular Izquierda/fisiologíaRESUMEN
CCAAT/enhancer-binding protein alpha (C/EBPα) is an essential transcription factor, regulating the differentiation of adipocytes. We cloned the complete open reading frame of C/EBPα gene of Qinchuan cattle and analyzed its protein structures and expression profile in 15 tissues via DNA cloning, sequencing and RT-PCR. Analysis of the putative protein sequences revealed that C/EBPα consists of alpha helices, random coils and a few extended strands. A significant transmembrane structure was observed in amino acid region 233 to 252. A basic leucine zipper domain was also found in amino acid region 277 to 340, which is characteristic of C/EBPs. Homologous comparison with various species indicated that the C/EBPα gene of Qinchuan cattle shares 97, 95, 94, 94, and 93% similarity in amino acid sequences with Sus scrofa, Homo sapiens, Rattus norvegicus, Oryctolagus cuniculus, and Mus musculus, respectively, implying strong sequence conservation of C/EBPα during evolution. RT-PCR revealed that the mRNA expression level of bovine C/EBPα gene in subcutaneous fat is much higher than that in the other 14 tissues, and the relative quantity in fat tissue increases with cattle age.