Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1330-1342, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005817

RESUMEN

This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 µg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.


Asunto(s)
Cistanche , Medicamentos Herbarios Chinos , Neoplasias , Animales , Ratones , Farmacología en Red , Beclina-1 , Especies Reactivas de Oxígeno , Extractos Vegetales , Medicamentos Herbarios Chinos/farmacología , Simulación del Acoplamiento Molecular , Medicina Tradicional China , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-32104190

RESUMEN

OBJECTIVE: In traditional Chinese medicine (TCM), chronic myeloid leukemia (CML) has been attributed to "poisoned bone marrow," which is viewed as a loss of Qi or blood, a deficiency in Yin or Yang that causes a complex imbalance between cell growth and death. Malignant myeloid progenitor cells display excessive growth that is difficult to control without toxicity. More than 60 herbs in TCM have shown efficacy against CML. However, the key molecules and mechanisms involved in the holistic-level characterization, as well as the effective target associations, are still unknown. METHODS: The present study employed a computational approach with filtering potential compounds via admetSAR, systems biology-based functional data prediction, and biochemical and molecular biological validation. RESULTS: We generated 118 bioactive compounds from 11 herbs within four dialectical therapy groups that are most commonly used to treat CML and predicted 141 potential targets. The stilbene resveratrol and its derivatives were found to be highly related to these targets. Among them, α-viniferin was predicted to target Bcl-2, caspase-3, 8, and 9, MAPK14, CDK2, HSP90AA1, and others, reflecting CML therapeutic strategies. In vitro, experimental data showed a nonnecrotic growth limitation of K562 cells caused by α-viniferin was predicted to target Bcl-2, caspase-3, 8, and 9, MAPK14, CDK2, HSP90AA1, and others, reflecting CML therapeutic strategies. µg·mL-1 at 24 h. Finally, we validated the chemotherapeutic effect of α-viniferin was predicted to target Bcl-2, caspase-3, 8, and 9, MAPK14, CDK2, HSP90AA1, and others, reflecting CML therapeutic strategies. CONCLUSIONS: Our work sheds light on the mechanism of the efficacy of the stilbene α-viniferin in TCM for the prevention of CML. This work also predicts and validates targets in the mitochondrial signaling pathway, providing a novel strategy for CML treatment.α-viniferin was predicted to target Bcl-2, caspase-3, 8, and 9, MAPK14, CDK2, HSP90AA1, and others, reflecting CML therapeutic strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...