Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8166, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071355

RESUMEN

Molecular folding regulation with environmental stimuli is critical in living and artificial molecular machine systems. Herein, we described a macrocycle, cyclo[4] (1,3-(4,6-dimethyl)benzene)[4](1,3-(4,6-dimethyl)benzene)(4-pyridine). Under 298 K, it has three stable stiff atropisomers with names as 1 (Cs symmetry), 2 (Cs symmetry), and 3 (C4v symmetry). At 393 K, 1 can reversibly transform into 2, but at 473 K, it can irrevocably transform into 3. At 338 K, 3 and (PhCN)2PdCl2 complex to produce the metal-organic cage 4. Only at 338 K does the combination of 1 or 2 and (PhCN)2PdCl2 create a gel-like structure. Heating both gels to 473 K transforms them into 4. In addition to offering a thermally accelerated method for modifying self-assembled systems using macrocyclic building blocks, this study also has the potential to develop the nanoscale transformation material with a thermal response.

2.
Molecules ; 28(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630294

RESUMEN

In the past half-century, macrocycles with different structures and functions, have played a critical role in supramolecular chemistry. Two macrocyclic moieties can be linked to form bismacrocycle molecules. Compared with monomacrocycle, the unique structures of bismacrocycles led to their specific recognition and assembly properties, also a wide range of applications, including molecular recognition, supramolecular self-assembly, advanced optical material construction, etc. In this review, we focus on the structure of bismacrocycle and their applications. Our goal is to summarize and outline the possible future development directions of bismacrocycle research.

3.
J Am Chem Soc ; 145(25): 14010-14018, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37327391

RESUMEN

Controllable solid-state transformations can provide a basis for novel functional materials. Herein, we report a series of solid-state systems that can be readily transformed between amorphous, co-crystalline, and mixed crystalline states via grinding or exposure to solvent vapors. The present solid materials were constructed using an all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (D4d-CDMB-8) (host), and neutral aggregation-caused quenching dyes (guests), including 9,10-dibromoanthracene (1), 1,8-naphtholactam (2), diisobutyl perylene-3,9-dicarboxylate (3), 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (4), 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (5), and 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (6). Seven co-crystals and six amorphous materials were obtained via host-guest complexation. Most of these materials displayed turn-on fluorescence emission (up to 20-fold enhancement relative to the corresponding solid-state guests). The interconversion between amorphous, co-crystalline states, and crystalline mixtures could be induced by exposure to solvent vapors or by subjecting to grinding. The transformations could be monitored readily by means of single-crystal and powder X-ray diffraction analyses, as well as solid-state fluorescent emission spectroscopy. The externally induced structural interconversions resulted in time-dependent fluorescence changes. This allowed sets of privileged number array codes to be generated.

4.
Angew Chem Int Ed Engl ; 62(15): e202300840, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36792540

RESUMEN

A novel chiral nanographene (i.e. EP9H) with a pentadecabenzo[9]helicene core fragment has been synthesized and fully characterized. Single-crystal X-ray diffraction unambiguously confirms the helical structure. The fluorescence emission of EP9H is located in the near infrared region (λem =684 nm) with a medium quantum yield (0.10) for helicene derivatives. Cyclic voltammetry reveals its seven quasi-reversible redox states from -2 to +5. Furthermore, enantiopure EP9H displays distinct CD signals in a broad spectral range from 300 to 700 nm. Notably, compared to the reported small organic molecules, EP9H displays an outstanding |glum | value of 4.50×10-2 and BCPL as 304 M-1 cm-1 .

5.
Org Lett ; 24(29): 5397-5401, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35834612

RESUMEN

A one-pot strategy with yields up to 82% was reported to generate 2-(pyridin-2-yl)-2-(3,3a,6-tris(5-pyridin-2-yl)-5-oxohexahydropyrrolo[3,2-b] pyrrol-2(1H)-ylidene)acetonitrile 1a and its derivatives 1b-d. Silica gel promoted quantitative conversion from stable intermediate to 1a within 30 min at room temperature. Finally, four chemical σ bonds and two chiral carbons with high diastereoselectivity were achieved. Compound 1a can act as a novel high selective UV-vis and fluorescence "turn-on" probe for Zn2+ and Cd2+, respond to proton, and show dual-state emission (DSE) characteristics.

6.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34789566

RESUMEN

We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6- salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.

7.
Molecules ; 26(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299516

RESUMEN

The metal-organic rotaxane framework (MORF) structures with the advantage of mechanically interlocking molecules (MIMs) have attracted intense interest from the chemical community. In this study, a set of MORFs (i.e., MORF-Pb-1 and MORF-Pb-2) are constructed using Pb2+, a tetraimidazolium macrocycle (Texas-sized molecular box; 14+), and aromatic dicarboxylate (p-phthalate dianions (PTADAs; 2) or 2,6-naphthalene dicarboxylate dianions (3)) via a one-pot three-layer diffusion protocol. In particular, an unusual Pb…Pb weak interaction was shown in MORF-Pb-1 (charactered with distance of 3.656 Å).

8.
Molecules ; 26(9)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919472

RESUMEN

The design and synthesis of novel macrocyclic host molecules continues to attract attention because such species play important roles in supramolecular chemistry. However, the discovery of new classes of macrocycles presents a considerable challenge due to the need to embody by design effective molecular recognition features, as well as ideally the development of synthetic routes that permit further functionalization. In 2010, we reported a new class of macrocyclic hosts: a set of tetracationic imidazolium macrocycles, which we termed "Texas-sized" molecular boxes (TxSBs) in homage to Stoddart's classic "blue box" (CBPQT4+). Compared with the rigid blue box, the first generation TxSB displayed considerably greater conformational flexibility and a relatively large central cavity, making it a good host for a variety of electron-rich guests. In this review, we provide a comprehensive summary of TxSB chemistry, detailing our recent progress in the area of anion-responsive supramolecular self-assembly and applications of the underlying chemistry to water purification, information storage, and controlled drug release. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where TxSBs and their constructs may have a role to play.

9.
J Am Chem Soc ; 143(5): 2315-2324, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33356188

RESUMEN

Described here is a three-component self-assembly system that displays emergent behavior that differs from that of its constituents. The system comprises an all-hydrocarbon octaaryl macrocycle cyclo[8](1,3-(4,6-dimethyl)benzene (D4d-CDMB-8), corannulene (Cora), and I2. No appreciable interaction is seen between any pair of these three-components, either in cyclohexane or under various crystallization conditions. On the other hand, when all three-components are mixed in cyclohexane and allowed to undergo crystallization, a supramolecular iodine-containing capsule, ((D4d-CDMB-8)3⊃(Cora)2)⊃I2, is obtained. This all-hydrocarbon capsule consists of three D4d-CDMB-8 and two Cora subunits and contains a centrally bound I2 molecule as inferred from single-crystal and powder X-ray diffraction studies as well as solid-state 13C NMR and Raman spectroscopy. These analyses were complemented by solution-phase 1H NMR and UV-vis spectroscopic studies. No evidence of I2 escape from the capsule is seen, even at high temperatures (e.g., up to 418 K). The bound I2 is likewise protected from reaction with alkali or standard reductants in aqueous solution (e.g., saturated NaOH(aq) or aqueous Na2S2O3). It was also found that a mixed powder containing D4d-CDMB-8 and Cora in a 3:2 molar ratio could capture saturated I2 vapor or iodine from aqueous sources (e.g., 1.0 mM I2 in NaCl (35 wt %) or I2 + NaI(aq) (1.0 mM each)). The present system displays structural and functional features that go beyond what would be expected on the basis of a simple sum-of-the-components analysis. As such, it illustrates a new approach to creating self-assembled ensembles with emergent features.

10.
J Org Chem ; 86(4): 3648-3655, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33372518

RESUMEN

Three-substituted 4H-quinolizin-4-ones were obtained via a facile method with good selectivity and high efficiency. On the basis of alkyne substrate control, the mild and cost-efficient reaction has a broad substrate scope (20 examples, up to 93% yield) and is also easy to scale up. Active sites on the products allow for further modifications. The alkyne substrate control strategy could be further extended to achieve more complex three-substituted 4H-quinolizin-4-one skeletons.


Asunto(s)
Alquinos , Estructura Molecular
11.
RSC Adv ; 11(25): 15030-15035, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424063

RESUMEN

DNA small molecular probe study was considered as a promising approach to achieve DNA related disease diagnosis. Most related reports were performed under specific salinity. Herein, 4-imino-3-(pyridin-2-yl)-4H-quinolizine-1-carbonitrile (IPQC) was generated via a facile procedure with high yield (85%). It is found that IPQC could act as a universal probe for most tested ssDNA, dsDNA and G4 DNA in low [K+] concentration (less than 20 mM). However, IPQC showed highly selective G4 DNA binding via UV-vis and fluorescence response in increasing [K+] (e.g., 150 mM) conditions. The ion atmosphere effects are instructive for DNA probe exploration. This provides guidance for the design, selection and optimization of the probes for target DNA sensing.

12.
Chemistry ; 26(43): 9466-9470, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32259330

RESUMEN

Macrocycle, cyclo[4] [(1,3-(4,6)-dimethylbezene)[4](2,6-(3,5)-dimethylpyridine (B4P4), shows highly selective binding affinity with protirelin (Pyr-His-Pro-NH2 ; TRH) among the tested 26 drug or drug adductive substrates. The stable complexation in a 1:1 manner was fully characterized in solution, gas phase, and solid state study. Furthermore, B4P4 acts as an efficient TRH inhibitor even at [macrocycle]:[drug] <1:300, both in membrane transport and cellar incubation. The current work provides an unprecedented strategy for macrocycles to be efficiently used in drug target therapy.


Asunto(s)
Dipéptidos/química , Piridinas/química , Hormona Liberadora de Tirotropina/farmacología , Dipéptidos/metabolismo , Hormona Liberadora de Tirotropina/química , Hormona Liberadora de Tirotropina/metabolismo
13.
J Am Chem Soc ; 142(16): 7443-7455, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32216311

RESUMEN

Substituent effects play critical roles in both modulating reaction chemistry and supramolecular self-assembly processes. Using substituted terephthalate dianions (p-phthalic acid dianions; PTADAs), the effect of varying the type, number, and position of the substituents was explored in terms of their ability to regulate the inherent anion complexation features of a tetracationic macrocycle, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (referred to as the Texas-sized molecular box; 14+), in the form of its tetrakis-PF6- salt in DMSO. Several of the tested substituents, including 2-OH, 2,5-di(OH), 2,5-di(NH2), 2,5-di(Me), 2,5-di(Cl), 2,5-di(Br), and 2,5-di(I), were found to promote pseudorotaxane formation in contrast to what was seen for the parent PTADA system. Other derivatives of PTADA, including those with 2,3-di(OH), 2,6-di(OH), 2,5-di(OMe), 2,3,5,6-tetra(Cl), and 2,3,5,6-tetra(F) substituents, led only to so-called outside binding, where the anion interacts with 14+ on the outside of the macrocyclic cavity. The differing binding modes produced by the choice of PTADA derivative were found to regulate further supramolecular self-assembly when the reaction components included additional metal cations (M). Depending on the specific choice of PTADA derivatives and metal cations (M = Co2+, Ni2+, Zn2+, Cd2+, Gd3+, Nd3+, Eu3+, Sm3+, Tb3+), constructs involving one-dimensional polyrotaxanes, outside-type rotaxanated supramolecular organic frameworks (RSOFs), or two-dimensional metal-organic rotaxane frameworks (MORFs) could be stabilized. The presence and nature of the substituent were found to dictate which specific higher order self-assembled structure was obtained using a given cation. In the specific case of the 2,5-di(OH), 2,5-di(Cl), and 2,5-di(Br) PTADA derivatives and Eu3+, so-called MORFs with distinct fluorescence emission properties could be produced. The present work serves to illustrate how small changes in guest substitution patterns may be used to control structure well beyond the first interaction sphere.

14.
Nat Commun ; 11(1): 77, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911631

RESUMEN

Host-guest complex solid state molecular motion is a critical but underexplored phenomenon. In principle, it can be used to control molecular machines that function in the solid state. Here we describe a solid state system that operates on the basis of complexation between an all-hydrocarbon macrocycle, D4d-CDMB-8, and perylene. Molecular motion in this solid state machine is induced by exposure to organic solvents or grinding and gives rise to different co-crystalline, mixed crystalline, or amorphous forms. Distinct time-dependent emissive responses are seen for different organic solvents as their respective vapours or when the solid forms are subject to grinding. This temporal feature allows the present D4d-CDMB-8⊃perylene-based system to be used as a time-dependent, colour-based 4th dimension response element in pattern-based information codes. This work highlights how dynamic control over solid-state host-guest molecular motion may be used to induce a tuneable temporal response and provide materials with information storage capability.

15.
Chem Commun (Camb) ; 55(26): 3701-3704, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30788481

RESUMEN

A new all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (CDMB-8) has been reported. As prepared, it exists in Cs symmetry and shows no interaction with fullerenes (e.g., C60 or C70). High temperature (573 K) treatment induces thermal conversion of the material to an isomeric conformer with D4d symmetry as a receptor for fullerene separation.

16.
J Am Chem Soc ; 141(11): 4597-4612, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30798593

RESUMEN

A new approach to anion sensing that involves excimer disaggregation induced emission (EDIE) is reported. It involves the anion-mediated disaggregation of the excimer formed from a cationic macrocycle. This leads to an increase in the observed fluorescence intensity. The macrocycle in question, cyclo[1] N2, N6-dimethyl- N2, N6-bis(6-(1 H-imidazolium-1-yl)pyridin-2-yl)pyridine-2,6-diamine[1]1,4-dimethylbenzene (12+; prepared as its PF6- salt), is obtained in ca. 70% yield via a simple cyclization. X-ray diffraction analyses of single crystals revealed that, as prepared, this macrocycle exists in a supramolecular polymeric form in the solid state. Macrocycle 12+ is weakly fluorescent in acetonitrile. The emission intensity is concentration dependent, with the maximum intensity being observed at [12+] ≈ 0.020 mM. This finding is ascribed to formation of an excimer, followed possibly by higher order aggregates as the concentration of 12+ is increased. Addition of tetrabutylammonium pyrophosphate (HP2O73-) to 12+ (0.020 mM in acetonitrile) produces a ca. 200-fold enhancement in the emission intensity (λex = 334 nm; λem = 390-650 nm). These findings are rationalized in terms of the HP2O73- serving to break up essentially non-fluorescent excited-state dimers of 12+ through formation of a highly fluorescent anion-bound monomeric complex, 12+·HP2O73-. A turn-on in the fluorescence intensity is also seen for H2PO4- and, to a lesser extent, HCO3-. Little (HSO4-, NO3-) or essentially no (N3-, SCN-, F-, Cl-, Br- and I-) response is seen for other anions. Solid-state structural analysis of single crystals obtained after treating 12+ with HP2O73- in the presence of water revealed a salt form wherein a H2P2O72- anion sits above the cone-like macrocycle.

17.
J Org Chem ; 83(16): 9561-9567, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29874460

RESUMEN

Using carbon dioxide as a C1 precursor, here we report relatively simple and cost-effective orthogonal tandem catalysis, namely Ag2O in conjunction with Cs2CO3 serves to promote a multicomponent tandem reaction forming two new C-C and one new C-N bonds. 4 H-Quinolizin-4-ones, key skeletal components in a variety of biologically active molecules, were obtained with yields up to 99%. The present approach features a broad substrate scope and mild reaction conditions and benefits from using cost-effective reaction and catalysts.

18.
Chem Commun (Camb) ; 53(70): 9684-9696, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28766599

RESUMEN

This feature article summarises recent contributions of the authors in the area of anion-induced supramolecular self-assembly. It is based on the chemistry of a set of tetracationic imidazolium macrocycles, specifically the so-called 'Texas-sized' molecular box, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene) (14+), and its congeners, cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,2-dimethylenebenzene) (24+), cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,3-dimethylenebenzene) (34+), and cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](2,6-dimethylenepyridine) (44+). These systems collectively have been demonstrated as being versatile building blocks that interact with organic carboxylate or sulfonate anions, as well as substrates (e.g., neutral molecules or metal cations). Most work to date has been carried out with 14+, a system that has been found to support the construction of a number of stimuli responsive self-assembled ensembles. This macrocycle and others of the 'Texas-sized' box family also show the potential to react as carbene precursors and to undergo post-synthetic modification (PSM) to produce new functional macrocycles, such as trans- and cis-cyclo[2]((Z)-N-(2-((6-(1H-imidazol-1-yl)pyridin-2-yl)amino)vinyl)formamide)[2](1,4-bismethylbenzene) (52+ and 62+, respectively). On the basis of the work reviewed in this Feature article, we propose that the imidazolium macrocycles 14+-44+ can be considered as useful tools for the construction of ensembles with environmentally responsive features, including control over self-assembly and an ability to undergo precursor-specific PSM.

19.
Chem Commun (Camb) ; 53(26): 3669-3672, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28300247

RESUMEN

Use of isomeric aminobenzene sulphonate anions in conjunction with a tetraimidazolium "molecular box" leads to self-assembled embedded structures. Simple 1 : 1 complexes are formed at low concentrations in DMSO when the host : guest ratio is 1.0. Higher order species are seen as the concentration is increased or the host-guest ratio is perturbed. The assembly and disassembly of the supramolecular aggregates can be controlled by application of various external stimuli, including changes in concentration, temperature, and protonation state of the guest species.

20.
Chem Sci ; 7(7): 4148-4157, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155059

RESUMEN

A facile post-synthetic modification of a tetracationic tetraimidazolium macrocycle, 14+ (i.e., the "Texas-sized" molecular box (cyclo[2](2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene)), is described. Under mild basic conditions, ring-opening of the imidazolium moieties occurs. This results in two new isomeric dicationic macrocycles. This simple yet efficient modification serves to alter the size of the molecular cavity, the charge of the macromolecular receptor, and the manner whereby it interacts with dianionic guest molecules. The isomeric mixture of imidazolium ring opened macrocycles can be synthesized in relatively high overall yield (86-93%). The reaction shows regioselectivity and the ratio of major to minor (i.e., trans : cis ring-opened products) was determined to be ca. 3 : 1 via1H NMR spectroscopy. The major isomer, trans-cyclo[2]((Z)-N-(2-((6-(1H-imidazol-1-yl)pyridin-2-yl)amino)vinyl)formamide)[2](1,4-bismethylbenzene) hexafluorophosphate (22+·2PF6-), was isolated in its pure form in 42% yield via recrystallization. The molecular recognition properties of 22+ were investigated using a series of dianionic guests (i.e., 2,6-naphthalenedicarboxylate (4), 2,6-naphthalenedisulfonate (5), and 1,5-naphthalenedisulfonate (6)) whose binding interactions with 14+ have been previously reported. This allowed us to evaluate how imidazolium ring-opening affects the inherent host/guest interactions of 14+. On the basis of solution spectroscopic studies (e.g., 1H NMR, 1H-1H COSY NMR, DOSY NMR, and NOESY NMR), in tandem with mass spectrometric analyses (ESI-MS) and single-crystal X-ray diffraction studies, we conclude that opening up the macrocyclic structure (i.e., converting 14+ to 22+) leads to considerable changes in the recognition behavior, with so-called outside binding or weak ion pair interactions, rather than pseudorotaxane formation, being favored both in solution and the solid-state. We postulate that methodologies such as those described herein could provide a means to control the molecular interactions of both free-standing macrocycles and those used to construct mechanically-interlocked molecules. Indeed, the application of hydroxide anion under the present conditions not only serves to effect the ring-opening of 14+, but also pseudorotaxane structures, such as, e.g., [14+·4] or [14+·5] derived there from.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...