Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Nat Commun ; 15(1): 2970, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582759

RESUMEN

Photoelectrochemical seawater splitting is a promising route for direct utilization of solar energy and abundant seawater resources for H2 production. However, the complex salinity composition in seawater results in intractable challenges for photoelectrodes. This paper describes the fabrication of a bilayer stack consisting of stainless steel and TiO2 as a cocatalyst and protective layer for Si photoanode. The chromium-incorporated NiFe (oxy)hydroxide converted from stainless steel film serves as a protective cocatalyst for efficient oxygen evolution and retarding the adsorption of corrosive ions from seawater, while the TiO2 is capable of avoiding the plasma damage of the surface layer of Si photoanode during the sputtering of stainless steel catalysts. By implementing this approach, the TiO2 layer effectively shields the vulnerable semiconductor photoelectrode from the harsh plasma sputtering conditions in stainless steel coating, preventing surface damages. Finally, the Si photoanode with the bilayer stack inhibits the adsorption of chloride and realizes 167 h stability in chloride-containing alkaline electrolytes. Furthermore, this photoanode also demonstrates stable performance under alkaline natural seawater for over 50 h with an applied bias photon-to-current efficiency of 2.62%.

2.
Chem Commun (Camb) ; 60(29): 3922-3925, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38501201

RESUMEN

A systematic theoretical study probing the catalytic potential of metal-doped SnO2(110) was conducted. The incorporation of metals such as Zr, Ti, W, V, Hf, and Ge is shown to drive electron transfer to Sn. The increased charge of Sn is injected into anti-bonding orbitals, finely tuning the catalytic activity and reducing the overpotential to -0.34 V. AIMD simulations show the stability of the modified structures. This work sheds light on the rational design of low-cost metal oxides with a high catalytic performance for CO2ER to formate.

3.
Chem Rev ; 124(6): 2955-3012, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478971

RESUMEN

The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.

4.
Nat Chem ; 16(4): 575-583, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168925

RESUMEN

In heterogeneous catalysis, the catalytic dehydrogenation reactions of hydrocarbons often exhibit a negative pressure dependence on hydrogen due to the competitive chemisorption of hydrocarbons and hydrogen. However, some catalysts show a positive pressure dependence for propane dehydrogenation, an important reaction for propylene production. Here we show that the positive activity dependence on H2 partial pressure of gallium oxide-based catalysts arises from metastable hydride mediation. Through in situ spectroscopic, kinetic and computational analyses, we demonstrate that under reaction conditions with H2 co-feeding, the dissociative adsorption of H2 on a partially reduced gallium oxide surface produces H atoms chemically bonded to coordinatively unsaturated Ga atoms. These metastable gallium hydride species promote C-H bond activation while inhibiting deep dehydrogenation. We found that the surface coverage of gallium hydride determines the catalytic performance. Accordingly, benefiting from proper H2 co-feeding, the alumina-supported, trace additive-modified gallium oxide catalyst GaOx-Ir-K/Al2O3 exhibited high activity and selectivity at high propane concentrations.

5.
Proc Natl Acad Sci U S A ; 121(4): e2316724121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232284

RESUMEN

Photoelectrochemical (PEC) carbon dioxide (CO2) reduction (CO2R) holds the potential to reduce the costs of solar fuel production by integrating CO2 utilization and light harvesting within one integrated device. However, the CO2R selectivity on the photocathode is limited by the lack of catalytic active sites and competition with the hydrogen evolution reaction. On the other hand, serious parasitic light absorption occurs on the front-side-illuminated photocathode due to the poor light transmittance of CO2R cocatalyst films, resulting in extremely low photocurrent density at the CO2R equilibrium potential. This paper describes the design and fabrication of a photocathode consisting of crystal phase-modulated Ag nanocrystal cocatalysts integrated on illumination-reaction decoupled heterojunction silicon (Si) substrate for the selective and efficient conversion of CO2. Ag nanocrystals containing unconventional hexagonal close-packed phases accelerate the charge transfer process in CO2R reaction, exhibiting excellent catalytic performance. Heterojunction Si substrate decouples light absorption from the CO2R catalyst layer, preventing the parasitic light absorption. The obtained photocathode exhibits a carbon monoxide (CO) Faradaic efficiency (FE) higher than 90% in a wide potential range, with the maximum FE reaching up to 97.4% at -0.2 V vs. reversible hydrogen electrode. At the CO2/CO equilibrium potential, a CO partial photocurrent density of -2.7 mA cm-2 with a CO FE of 96.5% is achieved in 0.1 M KHCO3 electrolyte on this photocathode, surpassing the expensive benchmark Au-based PEC CO2R system.

6.
Natl Sci Rev ; 11(2): nwad149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213529

RESUMEN

Gas diffusion electrodes (GDEs) mediate the transport of reactants, products and electrons for the electrocatalytic CO2 reduction reaction (CO2RR) in membrane electrode assemblies. The random distribution of ionomer, added by the traditional physical mixing method, in the catalyst layer of GDEs affects the transport of ions and CO2. Such a phenomenon results in elevated cell voltage and decaying selectivity at high current densities. This paper describes a pre-confinement method to construct GDEs with homogeneously distributed ionomer, which enhances mass transfer locally at the active centers. The optimized GDE exhibited comparatively low cell voltages and high CO Faradaic efficiencies (FE > 90%) at a wide range of current densities. It can also operate stably for over 220 h with the cell voltage staying almost unchanged. This good performance can be preserved even with diluted CO2 feeds, which is essential for pursuing a high single-pass conversion rate. This study provides a new approach to building efficient mass transfer pathways for ions and reactants in GDEs to promote the electrocatalytic CO2RR for practical applications.

7.
Chem Sci ; 15(3): 1046-1050, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38239696

RESUMEN

The strong promotion effects of alkali/alkaline earth metals are frequently reported for heterogeneous catalytic processes such as propane dehydrogenation (PDH), but their functioning principles remain elusive. This paper describes the effect of the addition of calcium (Ca) on reducing the deactivation rate of platinum-tin (Pt-Sn) catalyzed PDH from 0.04 h-1 to 0.0098 h-1 at 873 K under a WHSV of 16.5 h-1 of propane. The Pt-Sn-Ca catalyst shows a high propylene selectivity of >96% with a propylene production rate of 41 molC3H6 (gPt h)-1 and ∼1% activity loss after regeneration. The combination of characterization and DFT simulations reveals that Ca acts as a structural promoter favoring the transition of Snn+ in the parent catalyst to Sn0 during reduction, and the latter is an electron donor that increases the electron density of Pt. This greatly suppresses coke formation from deep dehydrogenation. Moreover, it was found that Ca promotes the formation of a highly reactive and sintering-resistant sub-nano Pt-Sn alloy with a diameter of approximately 0.8 nm. These lead to high activity and selectivity for the Pt-Sn-Ca catalyst for PDH.

8.
Nat Commun ; 15(1): 892, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291057

RESUMEN

The electrochemical reduction of CO has drawn a large amount of attention due to its potential to produce sustainable fuels and chemicals by using renewable energy. However, the reaction's mechanism is not yet well understood. A major debate is whether the rate-determining step for the generation of multi-carbon products is C-C coupling or CO hydrogenation. This paper conducts an experimental analysis of the rate-determining step, exploring pH dependency, kinetic isotope effects, and the impact of CO partial pressure on multi-carbon product activity. Results reveal constant multi-carbon product activity with pH or electrolyte deuteration changes, and CO partial pressure data aligns with the theoretical formula derived from *CO-*CO coupling as the rate-determining step. These findings establish the dimerization of two *CO as the rate-determining step for multi-carbon product formation. Extending the study to commercial copper nanoparticles and oxide-derived copper catalysts shows their rate-determining step also involves *CO-*CO coupling. This investigation provides vital kinetic data and a theoretical foundation for enhancing multi-carbon product production.

9.
World J Gastroenterol ; 29(41): 5630-5640, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38077155

RESUMEN

BACKGROUND: There is no consensus on the usage of extended criteria donor (ECD) grafts in liver transplantation (LT) for acute-on-chronic liver failure (ACLF) patients. AIM: To summarize the experience of using ECD livers in ACLF-LT. METHODS: A retrospective cohort study was conducted, enrolling patients who underwent LT at the First Affiliated Hospital of Sun Yat-Sen University from January 2015 to November 2021. The patients were divided into ECD and non-ECD groups for analysis. RESULTS: A total of 145 recipients were enrolled in this study, of which ECD and non-ECD recipients accounted for 53.8% and 46.2%, respectively. Donation after cardiac death (DCD) recipients accounted for the minority compared with donation after brain death (DBD) recipients (16.6% vs 83.4%). Neither overall survival nor graft survival significantly differed between ECD and non-ECD and DCD and DBD recipients. ECD grafts were associated with a significantly higher incidence of early allograft dysfunction (EAD) than non-ECD grafts (67.9% vs 41.8%, P = 0.002). Postoperative outcomes between DCD and DBD recipients were comparable (P > 0.05). ECD graft (P = 0.009), anhepatic phase (P = 0.034) and recipient gamma glutamyltransferase (P = 0.016) were independent risk factors for EAD. Recipient preoperative number of extrahepatic organ failures > 2 (P = 0.015) and intraoperative blood loss (P = 0.000) were independent predictors of poor post-LT survival. CONCLUSION: Although related to a higher risk of EAD, ECD grafts can be safely used in ACLF-LT. The main factors affecting post-LT survival in ACLF patients are their own severe preoperative disease and intraoperative blood loss.


Asunto(s)
Insuficiencia Hepática Crónica Agudizada , Trasplante de Hígado , Obtención de Tejidos y Órganos , Humanos , Trasplante de Hígado/efectos adversos , Insuficiencia Hepática Crónica Agudizada/cirugía , Insuficiencia Hepática Crónica Agudizada/etiología , Estudios Retrospectivos , Pérdida de Sangre Quirúrgica , Selección de Donante , Donantes de Tejidos , Muerte Encefálica , Supervivencia de Injerto , Muerte
10.
Chem Sci ; 14(33): 8777-8784, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37621421

RESUMEN

The complex reconstructed structure of materials can be revealed by global optimization. This paper describes a hybrid evolutionary algorithm (HEA) that combines differential evolution and genetic algorithms with a multi-tribe framework. An on-the-fly machine learning calculator is adopted to expedite the identification of low-lying structures. With a superior performance to other well-established methods, we further demonstrate its efficacy by optimizing the complex oxidized surface of Pt/Pd/Cu with different facets under (4 × 4) periodicity. The obtained structures are consistent with experimental results and are energetically lower than the previously presented model.

11.
Proc Natl Acad Sci U S A ; 120(34): e2305604120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37585465

RESUMEN

Electrochemical conversion of N2 into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N2 in aqueous systems. A high NH3 synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N2 to active sites. This paper describes the introduction of electron-rich Bi0 sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 µg cm-2 h-1 at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N2 reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH2 intermediates suggest electron-rich Bi0 boosts sound activation of N2 molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.

12.
Adv Mater ; 35(44): e2306923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37607263

RESUMEN

Photogenerated charge localization on material surfaces significantly affects photocatalytic performance, especially for multi-electron CO2 reduction. Dual single atom (DSA) catalysts with flexibly designed reactive sites have received significant research attention for CO2 photoreduction. However, the charge transfer mechanism in DSA catalysts remains poorly understood. Here, for the first time, a reversed electron transfer mechanism on Au and Co DSA catalysts is reported. In situ characterizations confirm that for CdS nanoparticles (NPs) loaded with Co or Au single atoms, photogenerated electrons are localized around the single atom of Co or Au. In DSA catalysts, however, electrons are delocalized from Au and accumulate around Co atoms. Importantly, combined advanced spectroscopic findings and theoretical computation evidence that this reversed electron transfer in Au/Co DSA boosts charge redistribution and activation of CO2 molecules, leading to highly significantly increased photocatalytic CO2 reduction, for example, Au/Co DSA loaded CdS exhibits, respectively, ≈2800% and 700% greater yields for CO and CH4 compared with that for CdS alone. Reversed electron transfer in DSA can be used for practical design for charge redistribution and to boost photoreduction of CO2 . Findings will be of benefit to researchers and manufacturers in DSA-loaded catalysts for the generation of solar fuels.

13.
Angew Chem Int Ed Engl ; 62(34): e202301901, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37395563

RESUMEN

Construction of a "net-zero-emission" system through CO2 hydrogenation to methanol with solar energy is an eco-friendly way to mitigate the greenhouse effect. Traditional CO2 hydrogenation demands centralized mass production for cost reduction with mass water electrolysis for hydrogen supply. To achieve continuous reaction with intermittent and fluctuating flow of H2 on a small-scale for distributed application scenarios, modulating the catalyst interface environment and chemical adsorption capacity to adapt fluctuating reaction conditions is highly desired. This paper describes a distributed clean CO2 utilization system in which the surface structure of catalysts is carefully regulated. The Ni catalyst with unsaturated electrons loaded on In2 O3 can reduce the dissociation energy of H2 to overcome the slow response of intermittent H2 supply, exhibiting a faster response (12 min) than bare oxide catalysts (42 min). Moreover, the introduction of Ni enhances the sensitivity of the catalyst to hydrogen, yielding a Ni/In2 O3 catalyst with a good performance at lower H2 concentrations with a 15 times adaptability for wider hydrogen fluctuation range than In2 O3 , greatly reducing the negative impact of unstable H2 supplies derived from renewable energies.

14.
Chem Sci ; 14(29): 7966-7972, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502326

RESUMEN

The grain boundaries (GBs) in copper (Cu) electrocatalysts have been suggested as active sites for CO2 electroreduction to ethanol. Nevertheless, the mechanisms are still elusive. Herein, we describe how GBs tune the activity and selectivity for ethanol on two representative Cu-GB models, namely Cu∑3/(111) GB and Cu∑5/(100) GB, using joint first-principles calculations and experiments. The unique geometric structures on the GBs facilitate the adsorption of bidentate intermediates, *COOH and *CHO, which are crucial for CO2 activation and CO protonation. The decreased CO-CHO coupling barriers on the GBs can be rationalized via kinetics analysis. Furthermore, when introducing GBs into Cu (100), the product is selectively switched from ethylene to ethanol, due to the stabilization effect for *CH3CHO and inapposite geometric structure for *O adsorption, which are validated by experimental trends. An overall 12.5 A current and a single-pass conversion of 5.18% for ethanol can be achieved over the synthesized Cu-GB catalyst by scaling up the electrode into a 25 cm2 membrane electrode assembly system.

15.
Science ; 381(6660): 886-890, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37498988

RESUMEN

Direct propane dehydrogenation (PDH) to propylene is a desirable commercial reaction but is highly endothermic and severely limited by thermodynamic equilibrium. Routes that oxidatively remove hydrogen as water have safety and cost challenges. We coupled chemical looping-selective hydrogen (H2) combustion and PDH with multifunctional ferric vanadate-vanadium oxide (FeVO4-VOx) redox catalysts. Well-dispersed VOx supported on aluminum oxide (Al2O3) provides dehydrogenation sites, and adjacent nanoscale FeVO4 acts as an oxygen carrier for subsequent H2 combustion. We achieved an integral performance of 81.3% propylene selectivity at 42.7% propane conversion at 550°C for 200 chemical looping cycles for the reoxidization of FeVO4. Based on catalytic experiments, spectroscopic characterization, and theory calculations, we propose a hydrogen spillover-mediated coupling mechanism. The hydrogen species generated at the VOx sites migrated to adjacent FeVO4 for combustion, which shifted PDH toward propylene. This mechanism is favored by the proximity between the dehydrogenation and combustion sites.

16.
Chem Sci ; 14(21): 5602-5607, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37265726

RESUMEN

Acidic electrochemical CO2 reduction reaction (CO2RR) can minimize carbonate formation and eliminate CO2 crossover, thereby improving long-term stability and enhancing single-pass carbon efficiency (SPCE). However, the kinetically favored hydrogen evolution reaction (HER) is generally predominant under acidic conditions. This paper describes the confinement of a local alkaline environment for efficient CO2RR in a strongly acidic electrolyte through the manipulation of mass transfer processes in well-designed hollow-structured Ag@C electrocatalysts. A high faradaic efficiency of over 95% at a current density of 300 mA cm-2 and an SPCE of 46.2% at a CO2 flow rate of 2 standard cubic centimeters per minute are achieved in the acidic electrolyte, with enhanced stability compared to that under alkaline conditions. Computational modeling results reveal that the unique structure of Ag@C could regulate the diffusion process of OH- and H+, confining a high-pH local reaction environment for the promoted activity. This work presents a promising route to engineer the microenvironment through the regulation of mass transport that permits the CO2RR in acidic electrolytes with high performance.

17.
Nat Commun ; 14(1): 3575, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328481

RESUMEN

The mechanism of how interfacial wettability impacts the CO2 electroreduction pathways to ethylene and ethanol remains unclear. This paper describes the design and realization of controllable equilibrium of kinetic-controlled *CO and *H via modifying alkanethiols with different alkyl chain lengths to reveal its contribution to ethylene and ethanol pathways. Characterization and simulation reveal that the mass transport of CO2 and H2O is related with interfacial wettability, which may result in the variation of kinetic-controlled *CO and *H ratio, which affects ethylene and ethanol pathways. Through modulating the hydrophilic interface to superhydrophobic interface, the reaction limitation shifts from insufficient supply of kinetic-controlled *CO to that of *H. The ethanol to ethylene ratio can be continuously tailored in a wide range from 0.9 to 1.92, with remarkable Faradaic efficiencies toward ethanol and multi-carbon (C2+) products up to 53.7% and 86.1%, respectively. A C2+ Faradaic efficiency of 80.3% can be achieved with a high C2+ partial current density of 321 mA cm-2, which is among the highest selectivity at such current densities.


Asunto(s)
Dióxido de Carbono , Etilenos , Humectabilidad , Etanol
18.
Chem Sci ; 14(23): 6414-6419, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37325145

RESUMEN

The activation of the C-H bond in heterogeneous catalysis plays a privileged role in converting light alkanes into commodity chemicals with a higher value. In contrast to traditional trial-and-error approaches, developing predictive descriptors via theoretical calculations can accelerate the process of catalyst design. Using density functional theory (DFT) calculations, this work describes tracking C-H bond activation of propane over transition metal catalysts, which is highly dependent on the electronic environment of catalytic sites. Furthermore, we reveal that the occupancy of the antibonding state for metal-adsorbate interaction is the key factor in determining the ability to activate the C-H bond. Among 10 frequently used electronic features, the work function (W) exhibits a strong negative correlation with C-H activation energies. We demonstrate that e-W can effectively quantify the ability of C-H bond activation, surpassing the predictive capacity of the d-band center. The C-H activation temperatures of the synthesized catalysts also confirm the effectiveness of this descriptor. Apart from propane, e-W applies to other reactants like methane.

19.
Chem Soc Rev ; 52(14): 4644-4671, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37325843

RESUMEN

Hydrogen is an essential energy carrier which will address the challenges posed by the energy crisis and climate change. Photoelectrochemical water splitting (PEC) is an important method for producing solar-powered hydrogen. The PEC tandem configuration harnesses sunlight as the exclusive energy source to drive both the hydrogen (HER) and oxygen evolution reactions (OER), simultaneously. Therefore, PEC tandem cells have been developed and gained tremendous interest in recent decades. This review describes the current status of the development of tandem cells for unbiased photoelectrochemical water splitting. The basic principles and prerequisites for constructing PEC tandem cells are introduced first. We then review various single photoelectrodes for use in water reduction or oxidation, and highlight the current state-of-the-art discoveries. Second, a close look into recent developments of PEC tandem cells in water splitting is provided. Finally, a perspective on the key challenges and prospects for the development of tandem cells for unbiased PEC water splitting are given.

20.
Nat Commun ; 14(1): 2620, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147344

RESUMEN

Propane dehydrogenation (PDH) is an industrial technology for direct propylene production which has received extensive attention in recent years. Nevertheless, existing non-oxidative dehydrogenation technologies still suffer from the thermodynamic equilibrium limitations and severe coking. Here, we develop the intensified propane dehydrogenation to propylene by the chemical looping engineering on nanoscale core-shell redox catalysts. The core-shell redox catalyst combines dehydrogenation catalyst and solid oxygen carrier at one particle, preferably compose of two to three atomic layer-type vanadia coating ceria nanodomains. The highest 93.5% propylene selectivity is obtained, sustaining 43.6% propylene yield under 300 long-term dehydrogenation-oxidation cycles, which outperforms an analog of industrially relevant K-CrOx/Al2O3 catalysts and exhibits 45% energy savings in the scale-up of chemical looping scheme. Combining in situ spectroscopies, kinetics, and theoretical calculation, an intrinsically dynamic lattice oxygen "donator-acceptor" process is proposed that O2- generated from the ceria oxygen carrier is boosted to diffuse and transfer to vanadia dehydrogenation sites via a concerted hopping pathway at the interface, stabilizing surface vanadia with moderate oxygen coverage at pseudo steady state for selective dehydrogenation without significant overoxidation or cracking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...