Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Discov ; 8(1): 22, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022384

RESUMEN

Alamandine (Ala) is a novel member of the renin-angiotensin-system (RAS) family. The present study aimed to explore the effects of Ala on hypertension and renal damage of Dahl salt-sensitive (SS) rats high-salt diet-induced, and the mechanisms of Ala on renal-damage alleviation. Dahl rats were fed with high-salt diets to induce hypertension and renal damage in vivo, and HK-2 cells were treated with sodium chloride (NaCl) to induce renal injury in vitro. Ala administration alleviated the high-salt diet-induced hypertension, renal dysfunction, and renal fibrosis and apoptosis in Dahl SS rats. The HK-2 cells' damage, and the increases in the levels of cleaved (c)-caspase3, c-caspase8, and c-poly(ADP-ribose) polymerase (PARP) induced by NaCl were inhibited by Ala. Ala attenuated the NaCl-induced oxidative stress in the kidney and HK-2 cells. DETC, an inhibitor of SOD, reversed the inhibitory effect of Ala on the apoptosis of HK-2 cells induced by NaCl. The NaCl-induced increase in the PKC level was suppressed by Ala in HK-2 cells. Notably, PKC overexpression reversed the moderating effects of Ala on the NaCl-induced apoptosis of HK-2 cells. These results show that Ala alleviates high-salt diet-induced hypertension and renal dysfunction. Ala attenuates the renal damage via inhibiting the PKC/reactive oxygen species (ROS) signaling pathway, thereby suppressing the apoptosis in renal tubular cells.

3.
Front Pharmacol ; 12: 658998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248622

RESUMEN

Bazi Bushen capsule (BZBS), as a Chinese medicine used to relieve fatigue, has been proven effective for the treatment of atherogenesis through antilipid effects. To investigate the potential mechanism of BZBS in the anti-atherosclerotic effect, Ovx/ApoE-/- mice were applied to investigate the anti-atherosclerotic efficiency and potential mechanism of BZBS. Therapeutic effect was evaluated based on the number of CD68+ and CD3+ cells, the level of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and the ratio of cleaved caspase-3/caspase-3, as well as increasing ratio of Bcl2/Bax. Human umbilical vein endothelial cells (HUVECs) were chosen to evaluate the role of GPER1. Treatment with BZBS reduced lipid deposition by reducing the numbers of CD68+ and CD3+ cells, the level of ICAM-1 and VCAM-1, and the ratio of cleaved caspase-3/caspase-3, and increasing the ratio of Bcl2/Bax as compared with the control group. In si-GPER1-treated HUVECs, the anti-apoptotic effect of BZBS was decreased. This study revealed that BZBS exhibited a clear effect against atherogenesis via GPER1-dependent anti-inflammatory and anti-apoptotic mechanisms. We believe that this manuscript is informative and useful for researchers pursuing the related alleviation of post-menopausal AS via anti-inflammatory and anti-apoptotic mechanisms.

4.
Peptides ; 141: 170550, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33839220

RESUMEN

Relaxin, an ovarian polypeptide hormone, is found in the hypothalamic paraventricular nucleus (PVN) which is an important central integrative site for the control of blood pressure and sympathetic outflow. The aim of this study was to determine if superoxide anions modulate the effects of relaxin in the PVN. Experiments were performed in normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Relaxin mRNA and protein, and its receptor, relaxin family peptide receptor 1 (RXFP1) levels in PVN were 3.24, 3.17, and 3.64 times higher in SHRs than in WKY rats, respectively. Microinjection of relaxin-2 into the PVN dose-dependently increased mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA) and heart rate (HR) in both WKY rats and SHRs, although the effects on MAP (16.87 ±â€¯1.99 vs. 8.97 ±â€¯1.48 mm Hg in 100 nmol), RSNA (22.60 ±â€¯2.15 vs. 11.77 ±â€¯1.43 % in 100 nmol) and HR (22.85 ±â€¯3.13 vs. 12.62 ±â€¯2.83 beats/min in 100 nmol) were greater in SHRs. Oxidative stress level was enhanced after relaxin-2 microinjection into the PVN. Pretreatment with superoxide anion scavengers or NADPH oxidase inhibitor blocked, and superoxide dismutase inhibitor potentiated the effects of relaxin-2 on MAP, RSNA and HR. RXFP1 knockdown significantly attenuated the blood pressure of SHRs, and inhibited the increases of atrial natriuretic peptide, brain natriuretic peptide, collagen I, collagen III and fibronectin in the heart of SHRs. These results demonstrated that relaxin is expressed in the PVN, and contributes to hypertension and sympathetic overdrive via oxidative stress. Down-regulation of RXFP1 in the PVN could attenuate hypertension and cardiac remodeling.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Relaxina/farmacología , Animales , Electrocardiografía , Depuradores de Radicales Libres/farmacología , Expresión Génica , Frecuencia Cardíaca/efectos de los fármacos , Masculino , NADPH Oxidasas/antagonistas & inhibidores , Núcleo Hipotalámico Paraventricular/fisiología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Relaxina/genética , Superóxido Dismutasa/antagonistas & inhibidores
5.
Chin Med J (Engl) ; 132(22): 2716-2723, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31725448

RESUMEN

BACKGROUND: Endostatin, a biologically active fragment of collagen XVIII, has been observed in patients with ischemic heart disease. The aim of the present study was to investigate whether endostatin overexpression could attenuate cardiac hypertrophy by inhibiting the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling pathway. METHODS: This study was examined in vivo in rats and in vitro in primary neonatal rat cardiomyocytes treated with angiotensin (Ang) II to model cardiac hypertrophy. Twenty-four male Sprague-Dawley rats were randomized into adenovirus (Ad)-green fluorescent protein, Ang II, Ad-endostatin, and Ang II + Ad-endostatin groups (n = 6 in each group). Four weeks later, all the rats were weighed and sacrificed after transthoracic echocardiography. Cardiac function was evaluated by transthoracic echocardiography, cardiomyocyte size was evaluated by hematoxylin-eosin staining. Levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were evaluated by quantitative reverse-transcription polymerase chain reaction or Western blotting, PKA level was evaluated by Western blotting, and cAMP level was evaluated by enzyme-linked immunosorbent assay. Statistical significance among multiple groups was evaluated by one-way analysis of variance. RESULTS: Endostatin overexpression reduced the increases in left ventricle (LV) mass (P = 0.0063), LV mass/body weight (BW) (P = 0.0013), interventricular septal thickness (IVS) in diastole (P = 0.0013), IVS in systole (P = 0.0056), left ventricular posterior wall thickness (LVPW) in diastole (P = 0.0291), LVPW in systole (P = 0.0080), heart weight (HW) (P = 0.0138), HW/BW (P = 0.0001), and HW/tibial length (P = 0.0372) in Ang II-treated rats. In addition, endostatin overexpression reduced cardiomyocyte cross-sectional area expansion, and reduced the levels of ANP and BNP in Ang II-treated rats (P = 0.0251 and 0.0477 for messenger RNA [mRNA]), and primary neonatal rat cardiomyocytes (P = 0.0188 and P = 0.0024 for mRNA; P = 0.0023 and 0.0013 for protein, respectively). Additionally, endostatin overexpression reduced the increase of cAMP (P = 0.0054) and PKA (P = 0.0328) levels in cardiomyocytes treated with Ang II. Treatment with cAMP reversed the effects of endostatin overexpression on ANP (P = 0.0263) and BNP (P = 0.0322) levels in cardiomyocytes induced by Ang II. CONCLUSION: Endostatin overexpression could alleviate cardiac hypertrophy by inhibiting the cAMP-PKA signaling pathway.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Endostatinas/metabolismo , Animales , Western Blotting , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ecocardiografía , Técnica del Anticuerpo Fluorescente , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
6.
Peptides ; 118: 170101, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31199949

RESUMEN

Microinjection of alamandine into the hypothalamic paraventricular nucleus (PVN) increased blood pressure and enhanced sympathetic activity. The aim of this study was to determine if superoxide anions modulate alamandine's effects in the PVN. Mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) were recorded in anaesthetized normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs). Microinjection of alamandine into the PVN increased MAP and RSNA in both WKY rats and SHRs, although to a greater extent in SHRs. These effects were blocked by pretreatment with an alamandine receptor (MrgD) antagonist D-Pro7-Ang-(1-7). Pretreatment with superoxide anion scavengers, tempol and tiron, and NADPH oxidase inhibitor apocynin (APO), also blocked the effects of alamandine on MAP and RSNA. In addition, pretreatment in the PVN with a superoxide dismutase (SOD) inhibitor diethyldithiocarbamic acid (DETC) potentiated the increases of MAP and RSNA induced by alamandine administration, with a greater response observed in SHRs. Superoxide anions and NADPH oxidase levels in the PVN were higher in SHRs than that in WKY rats. Alamandine treatment increased the levels of superoxide anions and NADPH oxidase in WKY and SHRs, however, with greater effect in SHRs. These alamandine-induced increases were inhibited by D-Pro7-Ang-(1-7) pretreatment in the PVN of both rats. These results demonstrate that superoxide anions in the PVN modulate alamandine-induced increases in blood pressure and sympathetic activity in both normotensive and hypertensive rats. Alamandine increases NADPH oxidase activity to induce superoxide anion production, which is mediated by the alamandine receptor.


Asunto(s)
Angiotensina I/química , Presión Sanguínea/efectos de los fármacos , Oligopéptidos/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Fragmentos de Péptidos/química , Superóxidos/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Angiotensina I/farmacología , Animales , Vías Autónomas/efectos de los fármacos , Masculino , NADPH Oxidasas/metabolismo , Fragmentos de Péptidos/farmacología , Ratas , Ratas Endogámicas SHR , Especies Reactivas de Oxígeno/metabolismo
7.
J Hum Genet ; 63(5): 627-638, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29491472

RESUMEN

Clinical research in coronary artery disease (CAD) primarily focused on genetic variants located in protein-coding regions. Recently, mutations fall within non-coding regions have been suggested to be essential to the pathogenesis of human complex disease. Super enhancer is a densely spaced cluster of transcriptional enhancers located in non-coding regions, which is critical for regulating cell-type specific gene expression. However, the underlying mechanism of the super enhancer single-nucleotide polymorphisms (SNPs) affecting the risk of CAD remains unclear. By integrating genome-wide association study (GWAS) meta-analysis of CAD and cell/tissue-specific histone modification data set, we identified 366 potential CAD-associated super enhancer SNPs in 67 loci, including 94 SNPs that are involved in regulating chromatin interactive and/or affecting the transcription factors binding affinity. Interestingly, we found 7 novel functional loci (CBFA2T3, ZMIZ1, DIP2B, SCNN1D/ACAP3, TMEM105, CAMK2G, and MAPK1) that CAD-associated super enhancer SNPs were clustered into the same or neighboring super enhancers. Pathway analysis showed a significant enrichment in several well-known signaling and regulatory processes, e.g., cAMP signaling pathway and ErbB signaling pathway, which play a key role in CAD metabolism. Our results highlight the potential functional importance of CAD-associated super enhancer SNPs and provide the targets for further insights on the pathogenesis of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Mapeo Cromosómico , Biología Computacional/métodos , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Histonas/metabolismo , Humanos , Anotación de Secuencia Molecular , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transcriptoma
8.
Mol Med Rep ; 12(5): 7116-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26397056

RESUMEN

Sympathetic activity is enhanced in heart failure and hypertensive rats. The aims of the current study were: i) To investigate the association between renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to intravenous injection of the ganglionic blocker hexamethonium; and ii) to determine whether normal Wistar rats and spontaneously hypertensive rats (SHRs) differ in their response to hexamethonium. RSNA and MAP were recorded in anaesthetized rats. Intravenous injection of four doses of hexamethonium significantly reduced the RSNA, MAP and heart rate (HR) in the Wistar rats and SHRs. There were no significant differences in the RSNA, MAP or HR between Wistar rats and SHRs at the two lowest doses of hexamethonium. However, the two highest doses of hexamethonium resulted in a greater reduction in the RSNA and MAP in SHRs compared with Wistar rats. There was a significant positive correlation between the alterations in RSNA and MAP in response to the intravenous injection of hexamethonium in the Wistar rats and SHRs. There were no significant differences in the timing of the maximal effects on RSNA, MAP or HR or in recovery following hexamethonium treatment. These results suggest that there is an association between the RSNA and MAP response to intravenous injection of hexamethonium and that the alterations in MAP in response to hexamethonium may be used to evaluate basal sympathetic nerve activity.


Asunto(s)
Antihipertensivos/farmacología , Presión Sanguínea/efectos de los fármacos , Hexametonio/farmacología , Animales , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...