Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(20): 8685-8695, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709795

RESUMEN

Forecasting alterations in ambient air pollution and the consequent health implications is crucial for safeguarding public health, advancing environmental sustainability, informing economic decision making, and promoting appropriate policy and regulatory action. However, predicting such changes poses a substantial challenge, requiring accurate data, sophisticated modeling methodologies, and a meticulous evaluation of multiple drivers. In this study, we calculate premature deaths due to ambient fine particulate matter (PM2.5) exposure in India from the 2020s (2016-2020) to the 2100s (2095-2100) under four different socioeconomic and climate scenarios (SSPs) based on four CMIP6 models. PM2.5 concentrations decreased in all SSP scenarios except for SSP3-7.0, with the lowest concentration observed in SSP1-2.6. The results indicate an upward trend in the five-year average number of deaths across all scenarios, ranging from 1.01 million in the 2020s to 4.12-5.44 million in the 2100s. Further analysis revealed that the benefits of reducing PM2.5 concentrations under all scenarios are largely mitigated by population aging and growth. These findings underscore the importance of proactive measures and an integrated approach in India to improve atmospheric quality and reduce vulnerability to aging under changing climate conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado , India , Humanos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales , Clima
2.
Chemosphere ; : 141548, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38417489

RESUMEN

In 2021, Nigeria was ranked by the World Health Organization (WHO) as one of the top countries with highly deteriorating air quality in the world. To date, no study has elucidated the sources of elevated fine particulate matter (PM2.5) concentrations over the entire Nigeria. In this study, the Community Multiscale Air Quality (CMAQ) model was applied to quantify the contributions of seven emissions sectors to PM2.5 and its components in Nigeria in 2021. Residential, industry, and agriculture were the major sources of primary PM (PPM) during the four seasons, elemental carbon (EC) and primary organic carbon (POC) were dominated by residential and industry, while residential, industry, transportation, and agriculture were the important sources of secondary inorganic aerosols (SIA) and its components in most regions. PM2.5 was up to 150 µg/m3 in the north in all the seasons, while it reached ∼80 µg/m3 in the south in January. Residential contributed most to PM2.5 (∼80 µg/m3), followed by industry (∼40 µg/m3), transportation (∼20 µg/m3), and agriculture (∼15 µg/m3). The large variation in the sources of PM2.5 and its components across Nigeria suggests that emissions control strategies should be separately designed for different regions. The results imply that urgent control of PM2.5 pollution in Nigeria is highly necessitated.

3.
Huan Jing Ke Xue ; 44(4): 1801-1810, 2023 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-37040931

RESUMEN

Meteorological conditions have important impacts on surface ozone (O3) formation. To evaluate the influence of future climate change on O3 concentrations in different regions of China, this study employed the climate data from the community earth system model provided by the CMIP5 under the RCP4.5, RCP6.0, and RCP8.5 scenarios to generate the initial and boundary conditions for the WRF model. Then, the dynamic downscaling WRF results were fed into a CMAQ model as meteorological fields with fixed emission data. Two 10-year periods (2006-2015 and 2046-2055) were selected in this study to discuss the impacts of climate change on O3. The results showed that climate change increased boundary layer height, mean temperature, and heatwave days in China during summer. Relative humidity decreased and wind speed near the surface showed no obvious change in the future. O3 concentration showed an increasing trend in Beijing-Tianjin-Hebei, Sichuan Basin, and South China. The extreme value of O3 maximum daily 8-hour moving average (MDA8) showed an increasing trend, following the order of RCP8.5 (0.7 µg·m-3)>RCP6.0 (0.3 µg·m-3)>RCP4.5 (0.2 µg·m-3). The number of days exceeding the standard for summer O3 had a similar spatial distribution with the heatwave days in China. The increase in heatwave days led to the increase in O3 extreme pollution events, and the possibility of a long-lasting O3 pollution event will increase in China in the future.

4.
Sci Total Environ ; 859(Pt 2): 160211, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36410475

RESUMEN

Surface ozone (O3) is mainly photochemically formed by nitrogen oxides (NOX) and volatile organic compounds (VOCs), and therefore O3 usually has a distinct diurnal variation with high concentrations in the afternoon and low values at night. However, eight nocturnal O3 increase (NOI) events were identified in Nanjing in June 2021. To understand the mechanism of NOI events, we selected two events (June 6-7, and 24-25) for observational data analysis. The Community Multiscale Air Quality (CMAQ) model was employed for the process analysis (PA) and regional transport of O3. By analyzing the O3 observation data and meteorological factors, we found that there were clear southeastward O3 transport paths. The O3 peak clearly moved from the upwind to the downwind cities in both events. Model simulations showed that when nocturnal O3 enhancement occurred, horizontal transport resulted in a negative to positive net O3 production rate. O3 continued to get accumulated in Nanjing. Nocturnal O3 in the first event was dominated by long-range transport, with the top two contributing cities being Huzhou (5.6 %) and Jiaxing (4.7 %). NOI during the second event was from the nearby upwind cities. The top three contributing cities were Shanghai (18.3 %), Wuxi (9.1 %), and Suzhou (8.8 %). We conclude that the June NOI events in Nanjing were mainly driven by the horizontal transport of southeasterly winds. This study provides scientific support for O3 prevention and control in Nanjing in the summer.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , China , Contaminación del Aire/análisis , Compuestos Orgánicos Volátiles/análisis
5.
Sci Total Environ ; 812: 151511, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34762949

RESUMEN

A regional ozone (O3) pollution event occurred in the Yangtze River Delta region during August 17-23, 2020 (except on August 21). This study aims to understand the causes of O3 pollution during the event using an emission-based model (i.e., the Community Multiscale Air Quality (CMAQ) model) and an observation-based model (OBM). The OBM was used to investigate O3 sensitivity to its precursors during the O3 pollution, concluding that O3 formation was limited by volatile organic compounds (VOCs) on August 19, but was co-limited by VOCs and nitrogen oxides (NOx) on other polluted days. Aromatics and alkenes were the two main VOC groups contributing to the O3 formation, with trans-2-butene and m/p-xylene as the key species among the VOCs measured at the Nanjing urban site. The source apportionment results estimated using the source-oriented CMAQ model suggest that the transportation and industry sources dominated the non-background O3 production in Nanjing, which were responsible for 52% and 24.7%, respectively. The O3 concentration attributed to NOx (~70%) was significantly higher than that attributed to VOCs (approximately 30%). The process analysis revealed that vertical mixing increased the O3 concentrations in the early morning, and photochemical reactions promoted O3 formation and accumulation during the daytime within the planetary boundary layer. At night, outflow from horizontal transport and nocturnal chemistry jointly resulted the O3 depletion. The contributions of inter-city transport during the O3 pollution period in Nanjing were also estimated. The predicted O3 concentration was largely recorded from long-distance regions, reaching 46%, followed by local sources (38%) and surrounding cities (16%). The results indicate that both NOx and VOCs contributed significantly to O3 pollution during this event, and the emissions controls of NOx and the key VOC species of aromatics and alkenes from a cooperative regional perspective should be considered to mitigate O3 pollution.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis
6.
Sci Total Environ ; 792: 148349, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34147813

RESUMEN

We investigated the spatial distribution and trend of double high pollution (DHP), in which the daily average concentration of fine particulate matter (PM2.5) was above 75 µg/m3 and the daily maximum 8-hour average ozone (MDA8 O3) concentration was above 160 µg/m3, in the Yangtze River Delta (YRD) region during 2015-2019, along with the meteorological and chemical characteristics during DHP and differences compared to high O3 pollution (HOP) and high PM2.5 pollution (HPP). In the YRD, Shanghai had the highest frequency of DHP at 7.6%, while Anhui had the least (2.1%). DHP mostly occurred in the northwest and along the Yangtze River in the east of the YRD, especially in spring (April) and autumn (October). MDA8 O3 level was relatively higher during DHP than HOP, while PM2.5 level was relatively higher during HPP than DHP. In 2015-2019, the total number of DHP events decreased in the YRD, but the changes in PM2.5 and O3 concentrations showed great spatial variations. DHP was often associated with a weak pressure field, under meteorological conditions with east winds, temperatures of 18.7-26.1 °C, relative humidity of 65.7-77.1%, sea level pressure of 1008.2-1019 hPa, wind speed of 1.4-2.4 m/s, and visibility of 3.1-7.5 km. Water-soluble ions (NO3-, NH4+, and SO42-) were the dominant components of PM2.5 during DHP at Nanjing and Changzhou City in 2019. Although the fraction of those ions during DHP and HPP were similar, the secondary conversion of NO2 and SO2 was stronger in HPP. The concentrations of those ions were lowest in HOP, with a higher fraction of sulfate than the other two types of pollution. The conversion of SO2 to sulfate was easier to occur than that of NO2 to nitrate under all the polluted conditions in the two cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Material Particulado/análisis , Ríos , Estaciones del Año
7.
Environ Pollut ; 285: 117242, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957508

RESUMEN

The assessment of premature mortality associated with the dramatic changes in fine particulate matter (PM2.5) and ozone (O3) has important scientific significance and provides valuable information for future emission control strategies. Exposure data are particularly vital but may cause great uncertainty in health burden assessments. This study, for the first time, used six methods to generate the concentration data of PM2.5 and O3 in China between 2014 and 2018, and then quantified the changes in premature mortality due to PM2.5 and O3 using the Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) model. The results show that PM2.5-related premature mortality in China decreases by 263 (95% confidence interval (CI95): 142-159) to 308 (CI95: 213-241) thousands from 2014 to 2018 by using different concentration data, while O3-related premature mortality increases by 67 (CI95: 26-104) to 103 (CI95: 40-163) thousands. The estimated mean changes are up to 40% different for the PM2.5-related mortality, and up to 30% for the O3-related mortality if different exposure data are chosen. The most significant difference due to the exposure data is found in the areas with a population density of around 103 people/km2, mostly located in Central China, for both PM2.5 and O3. Our results demonstrate that the exposure data source significantly affects mortality estimations and should thus be carefully considered in health burden assessments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China/epidemiología , Exposición a Riesgos Ambientales , Humanos , Mortalidad Prematura , Material Particulado/análisis
8.
Sci Total Environ ; 779: 146619, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34030281

RESUMEN

The Yangtze River Delta (YRD) urban agglomeration is one of the most developed regions in China. During recent decades, this region has experienced severe regional haze and photochemical smog pollution problems. In this study, we used a source-oriented chemical transport model to quantitatively estimate the effects of inter-city transport on fine particulate matter (PM2.5) and ozone (O3) among the 41 cities in the YRD urban agglomeration during the EXPLORE-YRD (EXPeriment on the eLucidation of the atmospheric Oxidation capacity and aerosol foRmation, and their Effects in the Yangtze River Delta) campaign (May 17 to June 17, 2018). The results show that inter-city transport is very significant in the YRD region. On average, the emissions from the local city, the other YRD cities, and the regions outside of the YRD contribute 25.3%, 49.9%, and 24.8% to the PM2.5, respectively, and they contribute 33.7%, 46.8%, and 19.5% of the non-background O3, respectively. On PM2.5 or O3 pollution days, the transport contribution from the non-local YRD cities becomes much more important, while the local emissions and the transport from non-YRD emissions become less important. The results also suggest that the cities within a distance of 184 km and 94 km contribute 60% of the PM2.5 and O3, respectively. Therefore, we recommend that regional cooperative control programs in the YRD consider emission controls over cities within these ranges. The range for primary PM2.5 (92 km) is very different from that for secondary PM2.5 (515 km). Cooperative emission controls of SO2 and NOx on a much larger regional scale are required to reduce the secondary PM2.5 in the YRD.

9.
Environ Res ; 198: 111186, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930403

RESUMEN

Lockdown measures to curtail the COVID-19 pandemic in China halted most non-essential activities on January 23, 2020. Despite significant reductions in anthropogenic emissions, the Beijing-Tianjin-Hebei (BTH) region still experienced high air pollution concentrations. Employing two emissions reduction scenarios, the Community Multiscale Air Quality (CMAQ) model was used to investigate the PM2.5 concentrations change in this region. The model using the scenario (C3) with greater traffic reductions performed better compared to the observed PM2.5. Compared with the no reductions base-case (scenario C1), PM2.5 reductions with scenario C3 were 2.70, 2.53, 2.90, 2.98, 3.30, 2.81, 2.82, 2.98, 2.68, and 2.83 µg/m3 in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai, respectively. During high-pollution days in scenario C3, the percentage reductions in PM2.5 concentrations in Beijing, Tianjin, Shijiazhuang, Baoding, Cangzhou, Chengde, Handan, Hengshui, Tangshan, and Xingtai were 3.76, 3.54, 3.28, 3.22, 3.57, 3.56, 3.47, 6.10, 3.61, and 3.67%, respectively. However, significant increases caused by unfavorable meteorological conditions counteracted the emissions reduction effects resulting in high air pollution in BTH region during the lockdown period. This study shows that effective air pollution control strategies incorporating these results are urgently required in BTH to avoid severe pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2
10.
Environ Sci Technol Lett ; 7(11): 779-786, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37566315

RESUMEN

During the COVID-19 lockdown period (from January 23 to February 29, 2020), ambient PM2.5 concentrations in the Yangtze River Delta (YRD) region were observed to be much lower, while the maximum daily 8 h average (MDA8) O3 concentrations became much higher compared to those before the lockdown (from January 1 to 22, 2020). Here, we show that emission reduction is the major driving force for the PM2.5 change, contributing to a PM2.5 decrease by 37% to 55% in the four YRD major cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei), but the MDA8 O3 increase is driven by both emission reduction (29%-52%) and variation in meteorological conditions (17%- 49%). Among all pollutants, reduction in emissions mainly of primary PM contributes to a PM2.5 decrease by 28% to 46%, and NOx emission reduction contributes 7% to 10%. Although NOx emission reduction dominates the MDA8 O3 increase (38%-59%), volatile organic compounds (VOCs) emission reduction lead to a 5% to 9% MDA8 O3 decrease. Increased O3 promotes secondary aerosol formation and partially offsets the decrease of PM2.5 caused by the primary PM emission reductions. The results demonstrate that more coordinated air pollution control strategies are needed in YRD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...