Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(13): 11125-11137, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38905437

RESUMEN

The design of the dinuclear Ru(II) complex (Ru2) with strong near-infrared (NIR) absorption properties has been reported for efficient anticancer phototherapy. Under 700 nm LED light excitation, Ru2 exhibited remarkable synergistic type I/II photosensitization ability and photocatalytic activity toward intracellular biomolecules. Ru2 showed impressive 700 nm light-triggered anticancer activity under normoxia and hypoxia compared with the clinically used photosensitizer Chlorin e6. The mechanistic studies showed that Ru2 induced intracellular redox imbalance and perturbed the energy metabolism and biosynthesis in A549 cancer cells. Overall, this work provides a new strategy for developing efficient metal-based complexes for anticancer phototherapy under NIR light.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rayos Infrarrojos , Fármacos Fotosensibilizantes , Rutenio , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Rutenio/química , Rutenio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Células A549 , Ensayos de Selección de Medicamentos Antitumorales , Fotoquimioterapia , Proliferación Celular/efectos de los fármacos
2.
Adv Healthc Mater ; : e2400956, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635863

RESUMEN

Photoactivable chemotherapy (PACT) using metallic complexes provides spatiotemporal selectivity over drug activation for targeted anticancer therapy. However, the poor absorption in near-infrared (NIR) light region of most metallic complexes renders tissue penetration challenging. Herein, an NIR light triggered dinuclear photoactivable Ru(II) complex (Ru2) is presented and the antitumor mechanism is comprehensively investigated. The introduction of a donor-acceptor-donor (D-A-D) linker greatly enhances the intramolecular charge transition, resulting in a high molar extinction coefficient in the NIR region with an extended triplet excited state lifetime. Most importantly, when activated by 700 nm NIR light, Ru2 exhibits unique slow photodissociation kinetics that facilitates synergistic photosensitization and photocatalytic activity to destroy diverse intracellular biomolecules. In vitro and in vivo experiments show that when activated by 700 nm NIR light, Ru2 exhibits nanomolar photocytotoxicity toward 4T1 cancer cells via the induction of calcium overload and endoplasmic reticulum (ER) stress. These findings provide a robust foundation for the development of NIR-activated Ru(II) PACT complexes for phototherapeutic application.

3.
Commun Chem ; 7(1): 43, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413721

RESUMEN

Despite having significant applications in the construction of controlled delivery systems with high anti-interference capability, to our knowledge dual-controlled molecular release has not yet been achieved based on small molecular/supramolecular entities. Herein, we report a dual-controlled release system based on coordination cages, for which releasing the guest from the cage demands synchronously altering the coordinative metal cations and the solvent. The cages, Hg5L2 and Ag5L2, are constructed via coordination-driven self-assembly of a corannulene-based ligand. While Hg5L2 shows a solvent-independent guest encapsulation in all the studied solvents, Ag5L2 is able to encapsulate the guests in only some of the solvents, such as acetone-d6, but will liberate the encapsulated guests in 1,1,2,2-tetrachloroethane-d2. Hg5L2 and Ag5L2 are interconvertible. Thus, the release of guests from Hg5L2 in acetone-d6 can be achieved, but requires two separate operations, including metal substitutions and a change of the solvent. Dual-controlled systems as such could be useful in complicated molecular release process to avoid those undesired stimulus-responses.

4.
ChemSusChem ; 14(20): 4499-4506, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34363650

RESUMEN

Single-atom catalysts (SACs), as a novel emerging category in heterogeneous catalysis, have exhibited superb activity and selectivity within the scope of many catalytic reactions, originating from their nature of atomic dispersion. However, they are not appropriate for more complicated reactions that benefit from multi-metal promotion, such as the carbon dioxide reduction reaction (CO2 RR). Atomic pair catalysts can provide a synergistic effect to break the intrinsic activity limit. Herein, inspired by theoretical prediction, a hetero-paired atomic-site catalyst (Ni/Fe-N/O-C) was developed for CO2 RR. Typically, the trace-amount-loaded double-atom-site catalysts exhibited outstanding turnover frequencies (≈460 s-1 ) surpassing reported ones by far. Interestingly, the loaded metal contents of the three M-N/O-C samples were extremely low, and Ni/Fe-N/O-C exhibited greatly improved durability compared with pure Ni-N/O-C or Fe-N/O-C and excellent CO selectivity above 80 % within a broad potential window of -1.4 to -1.7 V (vs. saturated calomel electrode, 99.8 % at -1.5 V). The superb performance of diatomic-site catalysts was attributed to the adjusted local environment and electron structure of the active center, which could decrease the reaction barrier of *COOH formation. This work presents new insights into manipulating electrocatalytic performance for the development of more sophisticated active sites.

5.
Nat Commun ; 10(1): 2807, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31243275

RESUMEN

Formic acid (or formate) is suggested to be one of the most economically viable products from electrochemical carbon dioxide reduction. However, its commercial viability hinges on the development of highly active and selective electrocatalysts. Here we report that structural defects have a profound positive impact on the electrocatalytic performance of bismuth. Bismuth oxide double-walled nanotubes with fragmented surface are prepared as a template, and are cathodically converted to defective bismuth nanotubes. This converted electrocatalyst enables carbon dioxide reduction to formate with excellent activity, selectivity and stability. Most significantly, its current density reaches ~288 mA cm-2 at -0.61 V versus reversible hydrogen electrode within a flow cell reactor under ambient conditions. Using density functional theory calculations, the excellent activity and selectivity are rationalized as the outcome of abundant defective bismuth sites that stabilize the *OCHO intermediate. Furthermore, this electrocatalyst is coupled with silicon photocathodes and achieves high-performance photoelectrochemical carbon dioxide reduction.

6.
ACS Nano ; 12(2): 1829-1836, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29397688

RESUMEN

Even though advocated as the potential low-cost alternatives to current lithium-ion technology, the practical viability of sodium-ion batteries remains illusive and depends on the development of high-performance electrode materials. Very few candidates available at present can simultaneously meet the requirements on capacity, rate capability, and cycle life. Herein, we report a high-temperature solution method to prepare Ni3S4 nanorods with uniform sizes. These colloidal nanorods readily self-assemble side by side and form microsized superstructures, which unfortunately negates the nanoscale feature of individual nanorods. To this end, we further introduce two-dimensional graphene nanosheets as the spacer to interrupt nanorod self-assembly. Resultant composite presents a marked advantage toward electrochemical storage of Na+ ions. We demonstrate that in half-cells it exhibits large reversible specific capacity in excess of 600 mAh/g, high rate capability with >300 mAh/g retained at 4 A/g, and great cycle life at different current rates. This anode material can also be combined with the NASICON-type Na3V2(PO4)3 cathode in full cells to enable large capacity and good cyclability.

7.
ACS Nano ; 10(12): 11337-11343, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28024342

RESUMEN

The development of nonprecious metal based electrocatalysts for hydrogen evolution reaction (HER) has received increasing attention over recent years. Previous studies have established Mo2C as a promising candidate. Nevertheless, its preparation requires high reaction temperature, which more than often causes particle sintering and results in low surface areas. In this study, we show supporting Mo2C nanoparticles on the three-dimensional scaffold as a possible solution to this challenge and develop a facile two-step preparation method for ∼3 nm Mo2C nanoparticles uniformly dispersed on carbon microflowers (Mo2C/NCF) via the self-polymerization of dopamine. The resulting hybrid material possesses large surface areas and a fully open and accessible structure with hierarchical order at different levels. MoO42- was found to play an important role in inducing the formation of this morphology presumably via its strong chelating interaction with the catechol groups of dopamine. Our electrochemical evaluation demonstrates that Mo2C/NCF exhibits excellent HER electrocatalytic performance with low onset overpotentials, small Tafel slopes, and excellent cycling stability in both acidic and alkaline solutions.

8.
Nat Commun ; 7: 13216, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27752046

RESUMEN

Earlier research has been primarily focused on WC as one of the most promising earth-abundant electrocatalysts for hydrogen evolution reaction (HER), whereas the other compound in this carbide family-W2C-has received far less attention. Our theoretical calculations suggest that such a focus is misplaced and W2C is potentially more HER-active than WC. Nevertheless, the preparation of phase pure and sintering-free W2C nanostructures represents a formidable challenge. Here we develop an improved carburization method and successfully prepare ultrasmall and phase-pure W2C nanoparticles. When evaluated for HER electrocatalysis, W2C nanoparticles exhibit a small onset overpotential of 50 mV, a Tafel slope of 45 mV dec-1 and outstanding long-term cycling stability, which are dramatically improved over all existing WC-based materials. In addition, the integration of W2C nanoparticles with p-type Si nanowires enables highly active and sustainable solar-driven hydrogen production. Our results highlight the great potential of this traditionally non-popular material in HER electrocatalysis.

9.
Angew Chem Int Ed Engl ; 53(30): 7860-3, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24838978

RESUMEN

Much has been done to search for highly efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER), which is critical to a range of electrochemical and photoelectrochemical processes. A new, high-temperature solution-phase method for the synthesis of ultrathin WS2 nanoflakes is now reported. The resulting product possesses monolayer thickness with dimensions in the nanometer range and abundant edges. These favorable structural features render the WS2 nanoflakes highly active and durable catalysts for the HER in acids. The catalyst exhibits a small HER overpotential of approximately 100 mV and a Tafel slope of 48 mV/decade. These ultrathin WS2 nanoflakes represent an attractive alternative to the precious platinum benchmark catalyst and rival MoS2 materials that have recently been heavily scrutinized for the electrocatalytic HER.

10.
Biomaterials ; 34(36): 9160-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24008045

RESUMEN

Magnetic targeting that utilizes a magnetic field to specifically delivery theranostic agents to targeted tumor regions can greatly improve the cancer treatment efficiency. Herein, we load chlorin e6 (Ce6), a widely used PS molecule in PDT, on polyethylene glycol (PEG) functionalized iron oxide nanoclusters (IONCs), obtaining IONC-PEG-Ce6 as a theranostic agent for dual-mode imaging guided and magnetic-targeting enhanced in vivo PDT. Interestingly, after being loaded on PEGylated IONCs, the absorbance/excitation peak of Ce6 shows an obvious red-shift from ~650 nm to ~700 nm, which locates in the NIR region with improved tissue penetration. Without noticeable dark toxicity, Ce6 loaded IONC-PEG (IONC-PEG-Ce6) exhibits significantly accelerated cellular uptake compared with free Ce6, and thus offers greatly improved in vitro photodynamic cancer cell killing efficiency under a low-power light exposure. After demonstrating the magnetic field (MF) enhanced PDT using IONC-PEG-Ce6, we then further test this concept in animal experiments. Owing to the strong magnetism of IONCs and the long blood-circulation time offered by the condensed PEG coating, IONC-PEG-Ce6 shows strong MF-induced tumor homing ability, as evidenced by in vivo dual modal optical and magnetic resonance (MR) imaging. In vivo PDT experiment based magnetic tumor targeting using IONC-PEG-Ce6 is finally carried out, achieving high therapeutic efficacy with dramatically delayed tumor growth after just a single injection and the MF-enhanced photodynamic treatment. Considering the biodegradability and non-toxicity of iron oxide, our IONC-PEG-Ce6 presented in this work may be a useful multifunctional agent promising in photodynamic cancer treatment under magnetic targeting.


Asunto(s)
Compuestos Férricos/química , Rayos Infrarrojos , Nanopartículas/química , Fotoquimioterapia , Polietilenglicoles/química , Porfirinas/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Endocitosis/efectos de los fármacos , Compuestos Férricos/síntesis química , Humanos , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Nanopartículas/ultraestructura , Polietilenglicoles/síntesis química , Porfirinas/síntesis química , Porfirinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA