Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharm Biol ; 61(1): 155-164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36604840

RESUMEN

CONTEXT: Salvia miltiorrhizae Bunge (Lamiaceae) is a traditional Chinese medicine (TCM) for the treatment of 'thoracic obstruction'. Transient receptor potential canonical channel 1 (TRPC1) is a important target for myocardial injury treatment. OBJECTIVE: This work screens the active component acting on TRPC1 from Salvia miltiorrhizae. MATERIALS AND METHODS: TCM Systems Pharmacology Database and Analysis Platform (TCMSP) was used to retrieve Salvia miltiorrhiza compounds for preliminary screening by referring to Lipinski's rule of five. Then, the compound group was comprehensively scored by AutoDock Vina based on TRPC1 protein. Surface plasmon resonance (SPR) was used to determine the affinity of the optimal compound to TRPC1 protein. Western blot assay was carried out to observe the effect of the optimal compound on TRPC1 protein expression in HL-1 cells, and Fura-2/AM detection was carried out to observe the effect of the optimal compound on calcium influx in HEK293 cells. RESULTS: Twenty compounds with relatively good characteristic parameters were determined from 202 compounds of Salvia miltiorrhiza. Rosmarinic acid (RosA) was obtained based on the molecular docking scoring function. RosA had a high binding affinity to TRPC1 protein (KD value = 1.27 µM). RosA (50 µM) could reduce the protein levels (417.1%) of TRPC1 after oxygen-glucose deprivation/reperfusion (OGD/R) in HL-1 cells and it could inhibit TRPC1-mediated Ca2+ influx injury (0.07 ΔRatio340/380) in HEK293 cells. DISCUSSION AND CONCLUSIONS: We obtained the potential active component RosA acting on TRPC1 from Salvia miltiorrhizae, and we speculate that RosA may be a promising clinical candidate for myocardial injury therapy.


Asunto(s)
Salvia miltiorrhiza , Humanos , Salvia miltiorrhiza/química , Simulación del Acoplamiento Molecular , Células HEK293 , Cinamatos/farmacología , Ácido Rosmarínico
2.
Pharm Biol ; 59(1): 222-231, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33600735

RESUMEN

CONTEXT: Rosmarinic acid (RosA), a natural poly-phenolic compound isolated from a variety of Labiatae herbs, has been reported to have a range of biological effects. OBJECTIVE: To investigate the cardioprotective effects of RosA against myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Male C57BL/6J mice were given RosA (100 mg/kg) via intragastric administration. After 1 week of administration, the mice were subjected to 30 min/24 h myocardial I/R injury. The mice were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + I/R, and RosA + I/R. Infarct size (IS), cardiac function (including EF, FS), histopathology, serum enzyme activities, ROS changes, cis aconitase (ACO) activity, and specific mRNA and protein levels were assessed in vivo. HL-1 cells were pre-treated with or without RosA (50 µM), followed by stimulation with 9 h/6 h of oxygen and glucose deprivation/re-oxygenation (OGD/R). The cells were randomly subdivided into 4 groups: Vehicle, RosA, Vehicle + OGD/R, and RosA + OGD/R. Lactate dehydrogenase (LDH) levels, ACO activity, ROS changes and protein levels were measured in vitro. RESULTS: Treatment with RosA reduced the following indicators in vivo (p < 0.05): (1) IS (14.5%); (2) EF (-23.4%) and FS (-18.4%); (3) the myocardial injury enzymes CK-MB (20.8 ng/mL) and cTnI (7.7 ng/mL); (4) DHE-ROS: (94.1%); (5) ACO activity (-2.1 mU/mg protein); (6) ogdh mRNA level (122.9%); and (7) OGDH protein level (69.9%). Moreover, treatment with RosA attenuated the following indicators in vitro (p < 0.05): (1) LDH level (191 U/L); (2) DHE-ROS: (165.2%); (3) ACO activity (-3.2 mU/mg protein); (4) ogdh mRNA level (70.0%); and (5) OGDH (110.1%), p-IκB-a (56.8%), and p-NF-κB (57.7%) protein levels. CONCLUSIONS: RosA has the potential to treat myocardial I/R injury with potential application in the clinic.


Asunto(s)
Cardiotónicos/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Inflamación/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Inflamación/patología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/etiología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/fisiopatología , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Ácido Rosmarínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...