Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G643-G658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564323

RESUMEN

Unacylated ghrelin (UAG), the unacylated form of ghrelin, accounts for 80%-90% of its circulation. Accumulated studies have pointed out that UAG may be used to treat metabolic disorders. This study aimed to investigate the effect of intestinal perfusion of UAG on metabolically associated fatty liver disease (MAFLD) induced by a high-fat diet and its possible mechanisms. Neuronal retrograde tracking combined with immunofluorescence, central administration of a glucagon-like peptide-1 receptor (GLP-1R) antagonist, and hepatic vagotomy was performed to reveal its possible mechanism involving a central glucagon-like peptide-1 (GLP-1) pathway. The results showed that intestinal perfusion of UAG significantly reduced serum lipids, aminotransferases, and food intake in MAFLD rats. Steatosis and lipid accumulation in the liver were significantly alleviated, and lipid metabolism-related enzymes in the liver were regulated. UAG upregulated the expression of GLP-1 receptor (GLP-1R) in the paraventricular nucleus (PVN) and GLP-1 in the nucleus tractus solitarii (NTS), as well as activated GLP-1 neurons in the NTS. Furthermore, GLP-1 fibers projected from NTS to PVN were activated by the intestinal perfusion of UAG. However, hepatic vagotomy and GLP-1R antagonists delivered into PVN before intestinal perfusion of UAG partially attenuated its alleviation of MAFLD. In conclusion, intestinal perfusion of UAG showed a therapeutic effect on MAFLD, which might be related to its activation of the GLP-1 neuronal pathway from NTS to PVN. The present results provide a new strategy for the treatment of MAFLD.NEW & NOTEWORTHY Intestinal perfusion of UAG, the unacylated form of ghrelin, has shown promising potential for treating MAFLD. This study unveils a potential mechanism involving the central GLP-1 pathway, with UAG upregulating GLP-1R expression and activating GLP-1 neurons in specific brain regions. These findings propose a novel therapeutic strategy for MAFLD treatment through UAG and its modulation of the GLP-1 neuronal pathway.


Asunto(s)
Ghrelina , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Animales , Ghrelina/metabolismo , Ghrelina/farmacología , Masculino , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Dieta Alta en Grasa , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Perfusión/métodos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Vagotomía
2.
Biomimetics (Basel) ; 9(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38667232

RESUMEN

Precision control of multiple robotic fish visual navigation in complex underwater environments has long been a challenging issue in the field of underwater robotics. To address this problem, this paper proposes a multi-robot fish obstacle traversal technique based on the combination of cross-modal variational autoencoder (CM-VAE) and imitation learning. Firstly, the overall framework of the robotic fish control system is introduced, where the first-person view of the robotic fish is encoded into a low-dimensional latent space using CM-VAE, and then different latent features in the space are mapped to the velocity commands of the robotic fish through imitation learning. Finally, to validate the effectiveness of the proposed method, experiments are conducted on linear, S-shaped, and circular gate frame trajectories with both single and multiple robotic fish. Analysis reveals that the visual navigation method proposed in this paper can stably traverse various types of gate frame trajectories. Compared to end-to-end learning and purely unsupervised image reconstruction, the proposed control strategy demonstrates superior performance, offering a new solution for the intelligent navigation of robotic fish in complex environments.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38299402

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a high-indence malignance of the digestive system with a high mortality rate in the world. AIM: The results are desired to provide an important theoretical basis for discovering new therapeutic targets for CRC. OBJECTIVE: The expression of human endogenous retrovirus-H-long terminal repeat association protein 2 (HHLA2) in human CRC was detected to explore its correlationship with clinicopathological features and prognosis of patients and its potential in treating CRC. METHODS: Western blot was employed to detect HHLA2 expression in fresh tissues obtained from 6 CRC patients' excisions, including cancer, paracancer, and normal issues. Immunohistochemical staining was employed to determine HHLA2 expression in paraffin-embedded specimens of 139 patients with colorectal cancer, and its relationship with the clinicopathological profiles and survival was analyzed. Small interfering RNA (siRNA) targeting HHLA2 was used to transfect CRC cells to silent HHLA2. MTT, plate colony formation, cell scratch, and Transwell assay were conducted to observe the proliferation, migration, and invasion of CRC cells. RESULTS: HHLA2 protein was expressed in human colorectal cancer tissues, paracancer tissues and normal tissues, which was significantly upregulated in cancer tissues (P<0.01). HHLA2 expression level in CRC tissues showed a close correlationship with the invasion depth of the tumor (P=0.000), metastasis of regional lymph nodes (P=0.018), clinical stage (P=0.010), and patient survival (P=0.011). Correlation with gender (P=0.873), age (P=0.864), location of the tumor (P=0.768), degree of tumor differentiation (P=0.569) and distant metastasis (P=0.494) exhibited no significance. The survival time of CRC patients with high and low HHLA2 expression groups was 43.231 months and 55.649 months, respectively, with a statistical difference between the two groups (P=0.001). Silencing HHLA2 inhibited proliferation, migration and invasion of CRC cells significantly. CONCLUSION: HHLA2 is overexpressed in CRC tissues which is associated with poor prognosis of patients. HHLA2 might be recognized as a new candidate for adjuvant diagnosis and prognosis of CRC, as well as a promised new target for immunotherapy of CRC.

5.
J Chemother ; : 1-15, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38291982

RESUMEN

With the development of newer biomarkers in the diagnosis of gastric cancer (GC), therapeutic targets are emerging and molecular-targeted therapy is in progress RNA interference has emerged as a promising method of gene targeting therapy. However, naked small interfering RNA (siRNA) is unstable and susceptible to degradation, so employing vectors for siRNA delivery is the focus of our research. Therefore, we developed LMWP modified PEG-SS-PEI to deliver siRNA targeting BRD4 (L-NPs/siBRD4) for GC therapy. L-NPs/siBRD4 were prepared by electrostatic interaction and characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The release characteristics, cellular uptake and intracellular localization were also investigated. The in vitro anticancer activity of the prepared nanoparticles was analysed by MTT, Transwell invasion and wound healing assay. Quantitative real time-polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of gene silencing. The results showed that the optimal N/P was 30 and the prepared L-NPs/siBRD4 uniformly distributed in the system with a spherical and regular shape. L-NPs/siBRD4 exhibited an accelerated release in GSH-containing media from 12h to 24h. The uptake of L-NPs/siBRD4 was enhanced and mainly co-localized in the lysosomes. After 6h incubation, LMWP modified PEG-SS-PEI helped siRNA escape from the lysosomes and diffused into the cytoplasm. L-NPs/siBRD4 significantly inhibited the proliferation, migration and invasion of cells. This might be related with the silence of BRD4, then inhibition of PI3K/Akt and c-Myc. Our results demonstrate that L-NPs/siBRD4 are a novel delivery system with anticancer, which may provide a more effective strategy for GC treatment.

6.
Iran J Basic Med Sci ; 27(1): 49-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164484

RESUMEN

Objectives: Liver injury and hyperlipidemia are major issues that have drawn more and more attention in recent years. The present study aimed to investigate the effects of unacylated ghrelin (UAG) on acute liver injury and hyperlipidemia in mice. Materials and Methods: UAG was injected intraperitoneally once a day for three days. Three hours after the last administration, acute liver injury was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and acute hyperlipidemia was induced by intraperitoneal injection of poloxamer 407, respectively. Twenty-four hours later, samples were collected for serum biochemistry analysis, histopathological examination, and Western blotting. Results: In acute liver injury mice, UAG significantly decreased liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), reduced malondialdehyde (MDA) concentration and increased superoxide dismutase(SOD) in liver tissue. NF-kappa B (NF-κB) protein expression in the liver was down-regulated. In acute hyperlipidemia mice, UAG significantly decreased serum total cholesterol (TC), triglyceride (TG), ALT, and AST, as well as hepatic TG levels. Meanwhile, hepatic MDA decreased and SOD increased significantly. Moreover, UAG improved the pathological damage in the liver induced by CCl4 and poloxamer 407, respectively. Conclusion: Intraperitoneal injection of UAG exhibited hepatoprotective and lipid-lowering effects on acute liver injury and hyperlipidemia, which is attributed to its anti-inflammatory and anti-oxidant activities.

7.
Curr Cancer Drug Targets ; 24(2): 167-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37282642

RESUMEN

BACKGROUND: BRD4 is a member of the bromodomain and extra terminal domain (BET) family of proteins, containing two bromodomains and one extra terminal domain, and is overexpressed in several human malignancies. However, its expression in gastric cancer has not yet been well illustrated. OBJECTIVE: This study aimed to elucidate the overexpression of BRD4 in gastric cancer and its clinical significance as a novel therapeutic target. METHODS: Fresh gastric cancer tissues and paraffin-embedded specimens of gastric cancer patients were collected, and the BRD4 expression was examined by Western Blot Analysis (WB) and Immunohistochemistry Analysis (IHC), respectively. The possible relationship between BRD4 expression and the clinicopathological features as well as survival in gastric cancer patients was analyzed. The effect of BRD4 silencing on human gastric cancer cell lines was investigated by MTT assay, WB, wound healing assay, and Transwell invasion. RESULTS: The results showed that the expression level in tumor tissues and adjacent tissues was significantly higher than that in normal tissues, respectively (P < 0.01). BRD4 expression level in gastric cancer tissues was strongly correlated with the degree of tumor differentiated degree (P = 0.033), regional lymph nodes metastasis (P = 0.038), clinical staging (P = 0.002), and survival situation (P = 0.000), while the gender (P = 0.564), age (P = 0.926) and infiltrating depth (P = 0.619) of patients were not associated. Increased BRD4 expression resulted in poor overall survival (P = 0.003). In in vitro assays, BRD4 small interfering RNA resulted in significantly decreased BRD4 protein expression, therefore inhibiting proliferation, migration, and invasion of gastric cancer cells. CONCLUSION: BRD4 might be a novel biomarker for the early diagnosis, prognosis, and therapeutic target in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Relevancia Clínica , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
8.
Mol Neurobiol ; 61(4): 2390-2410, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37875709

RESUMEN

The human fetal thyroid gland is not capable of producing thyroid hormones independently until 20 weeks of gestation, and if maternal thyroid hormone synthesis is inadequate in early pregnancy, fetal brain and nerve development may be affected by maternal hypothyroidism. Curcumin, which is isolated from turmeric (Curcuma longa), has been shown to be effective in repairing neurological disorders and is effective in relieving nerve damage when consumed over a long period of time. In this experiment, we investigated the effect of curcumin supplementation on synaptic development of rat hippocampal neurons. A cell model of oxidative damage and a young rat model of hypothyroidism were constructed, and model cells and rats were treated with triiodothyronine (T3), tetraiodothyronine (T4), and curcumin, respectively. Damage of nerve cells and animal brain tissues was examined, and the effect of curcumin in alleviating the blocked neurodevelopment was investigated. Further modulation of GSK-3ß/ß-catenin was performed to investigate the mechanism of action of curcumin. Ultimately, we found that T3-, T4-, and curcumin-treated model cells and young rats had increased numbers of synapses and good neurodevelopment. At the same time, we found that curcumin inhibited the production of GSK-3ß and Axin to activate ß-catenin. The inhibition of ß-catenin weakened the therapeutic effect of curcumin, and the differences between the indicators and the model group disappeared. Both cellular and animal experiments supported that curcumin effectively alleviated the oxidative cell damage caused by thyroxine deficiency and activated the synaptogenic ability of nerve synapses by inhibiting GSK-3ß and protecting ß-catenin activity.


Asunto(s)
Curcumina , Hipotiroidismo , Ratas , Humanos , Animales , Curcumina/farmacología , Glucógeno Sintasa Quinasa 3 beta , beta Catenina/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Hipocampo/metabolismo , Suplementos Dietéticos
10.
J Food Sci ; 88(4): 1482-1494, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36916120

RESUMEN

The effect of sea buckthorn seed oil (SSO) on exercise-induced fatigue in mice was explored. The animals were randomly divided into a normal control group, exercise-induced fatigue group (EFG), SSO low-dose group, SSO medium-dose group, and SSO high-dose group. The mice in all the groups underwent swimming training for 10 days. Those in the treatment groups received different amounts of SSO (0.85, 1.68, and 3.35 g/kg BW [body weight]) before the exercise. All the animals were sacrificed on the last day after an exhaustive swimming test, and serum, liver, and brain specimens were collected. In the exhaustive swimming test, the swimming durations in the SSO-treated animals were longer than those in the EFG. Furthermore, SSO reduced serum lactic acid, blood urea nitrogen, and hepatic malondialdehyde levels and increased liver glycogen level, hepatic superoxide dismutase level, hypothalamic dopamine content, and glutathione peroxidase level. The SSO treatment decreased hypothalamic 5-hydroxytryptamine content, lipid hydroperoxide level, NLRP3 inflammasome, and interleukin-1ß protein expression in the prefrontal cortex. Furthermore, it promoted the protein expression of nuclear factor erythroid 2-related factor 2 in the liver. SSO exhibited an excellent antifatigue effect, which may be related to its inhibition of oxidative and inflammatory injury and regulation of hypothalamic neurotransmitters. PRACTICAL APPLICATION: In the present study, the effect of sea buckthorn seed oil on fatigue in mice and its potential mechanism were explored. Taken together, the findings provide insight into the potential role of sea buckthorn seed oil in the development of antifatigue drugs.


Asunto(s)
Hippophae , Ratones , Animales , Natación , Fatiga/tratamiento farmacológico , Oxidación-Reducción , Aceites de Plantas/farmacología
11.
Chem Biodivers ; 20(4): e202200523, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36941224

RESUMEN

Chamomile essential oil (CEO) is extracted from chamomile and mainly used in aromatherapy. The chemical constituents and its antitumor activity on Triple-negative breast cancer (TNBC) was explored in the present study. Gas chromatography-mass spectrometry (GC/MS) was employed to analyze the chemical constituents of CEO. The cell viability, migration and invasion of TNBC cell MDA-MB-231 were measured using MTT, wound scratch and Transwell assay, respectively. The protein expression of PI3K/Akt/mTOR signaling pathway was determined by Western blot. CEO is rich in terpenoids (63.51 %), among which the identified terpenoids and their derivatives are mainly Caryophyllene (29.57 %), d-Cadinene (12.81 %), Caryophyllene oxide (14.51 %), etc. Three concentration of CEO (1, 1.5, 2 µg/mL) significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells with a dose dependent manner. Moreover, the phosphorylation of PI3K, Akt and mTOR was inhibited by CEO. The results revealed that there was abundant terpenoids in the CEO which account for 63.51 %. CEO significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells, exhibiting antitumor effect on TNBC. The antitumor effect of CEO might attribute to its inhibition on PI3K/Akt/mTOR signaling pathway. However, further study should be conducted in more TNBC cell lines and animal models to provide further evidence for TNBC treatment by CEO.


Asunto(s)
Aceites Volátiles , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células MDA-MB-231 , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Manzanilla/metabolismo , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Terpenos/farmacología , Proliferación Celular
12.
Cell Death Discov ; 9(1): 46, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36746932

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the accumulation of amyloid ß peptides (Aß) and impaired glucose metabolism in the brain. Osteocalcin (OCN), an osteoblast-derived protein, has been shown to modulate brain functions but whether it has any effect on AD is undetermined. In this study, daily intraperitoneal injection of OCN for 4 weeks ameliorated the anxiety-like behaviors and cognitive dysfunctions in the APP/PS1 transgenic AD mice model, as shown in the increased entries into the central area in open field test, the increased time and entries into open arms in elevated plus maze test, the increased time spent in the light chamber in light-dark transition test, as well as the reduced escape latency and the increased preference for target quadrant in Morris water maze test. Aß burden in the hippocampus and cortex of AD mice was ameliorated by OCN. Besides, OCN improved the neural network function of the brain, mainly in the enhanced power of high gamma band in the medial prefrontal cortex of AD mice. The proliferation of astrocytes in the hippocampus in AD mice was also inhibited by OCN as demonstrated by immunofluorescence. Furthermore, OCN enhanced glycolysis in astrocytes and microglia, as evidenced by elevated glucose consumption, lactate production, and increased extracellular acidification rate. Such an effect was abolished when the receptor of OCN - Gpr158 was knockdown in astrocytes. Our study revealed OCN as a novel therapeutic factor for AD potentially through reducing Aß burden and upregulation of glycolysis in neuroglia.

13.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(3): 306-313, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36207832

RESUMEN

OBJECTIVE: To investigate molecular and clinical characteristics of children with permanent congenital hypothyroidism (CH) in Yunnan, China. METHODS: The clinical data of 40 children with CH diagnosed and treated in the First People's Hospital of Yunnan Province during January 2016 and January 2019 were retrospectively analyzed. All children were followed up to 3 years old, and Gesell intelligent score was evaluated at age of 1, 2 and 3 years, respectively. Developmental status and prognosis were evaluated. Next-generation sequencing (NGS) was used to screen all exons and exon-intron boundary sequences of the 27 known CH associated genes, and the relationship between genotypes and clinical phenotypes was analyzed. RESULTS: Among the 40 children, the thyroid related pathogenic gene mutations were detected in 23 cases with a rate of 57.5%, and a total of 32 mutations of 8 genes were detected. Mutations in DUOX2, TPO and TSHR genes were the most common ones with mutation frequencies of 65.9%(29/44), 11.4%(5/44) and 9.1%(4/44), respectively. DUOX2 gene mutations were detected in 17 children with CH, and a total of 17 mutation types were detected. p.K530* was the most common mutation in DUOX2 gene, accounting for 20.7%(6/29). There was no significant difference in physical development and intelligence assessment between children with DUOX2 heterozygous mutation and compound heterozygous mutations. None of patients could terminate medication at 3 years of the follow-up and all of them were provisionally assessed as permanent CH. The physical and mental development assessment of children with other gene mutations were also in the normal range. CONCLUSION: The detection rate of DUOX2, TPO and TSHR pathogenic mutations are high among children with permanent CH in Yunnan area, and no correlation is observed between gene mutation types and prognosis in children with CH.


Asunto(s)
Hipotiroidismo Congénito , China , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Oxidasas Duales/genética , Humanos , Mutación , Estudios Retrospectivos
14.
Iran J Basic Med Sci ; 25(9): 1117-1122, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36246070

RESUMEN

Objectives: Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of clinical metabolic syndrome. Insulin resistance is an important factor in the pathogenesis of NAFLD. Ghrelin, widely distributed in peripheral tissues and the central nervous system, plays a vital role in regulating food intake, energy balance, and substance metabolism. In this study, the effect of intracerebroventricular (ICV) injection of ghrelin receptor antagonist on NAFLD was explored. Materials and Methods: A rat model of NAFLD was established by feeding a high-fat diet, and a selective ghrelin receptor antagonist [D-Lys-3]-GHRP-6 was injected via ventricular intubation implantation. The serum total cholesterol (TC), triglycerides (TGs), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and hepatic TGs were measured using the colorimetric method. Fasting plasma glucose (FPG) and fasting plasma insulin (FPI) were determined to calculate homeostatic model assessment insulin resistance (HOMA-IR). Hematoxylin-eosin (HE) and Oil Red O staining were conducted to observe the pathological changes and lipid accumulation in the liver. Hosphatidylinositide3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway protein expressions were measured using western blot analysis. Results: ICV injection of [D-Lys-3]-GHRP-6 significantly reduced serum lipids, transaminase, and HOMA-IR, improved liver injury, and inhibited lipid accumulation in the liver of NAFLD rats. Moreover, ICV injection of [D-Lys-3]-GHRP-6 significantly up-regulated the phosphorylation levels of PI3K/Akt/mTOR signaling protein expressions in the hypothalamus, indicating a significant improvement in hypothalamic insulin resistance. Conclusion: Blockade of central ghrelin receptor can treat NAFLD possibly via the hypothalamic PI3K/Akt/mTOR signaling pathway to improve insulin resistance.

15.
J Food Biochem ; 46(12): e14406, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121189

RESUMEN

The active compounds isolated from Black pepper have anticancer effects, but the bioactivity of Black pepper essential oil (BP-EO) is rarely studied. BP-EO has poor stability and a suitable dose form should be prepared for in vivo delivery. Triple negative breast cancer (TNBC) has attracted more and more attention due to its high mitotic index, high metastasis rate and poor prognosis. In this study, the composition of BP-EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and nanoparticles (NPs) loaded with BP-EO were prepared by nanoprecipitation method using Eudragit L100 as a carrier. We investigated the preparation, characterization, stability and in vitro release of nanoparticles. MTT assay, cell wound healing, Transwell invasion assay and Western blot were used to study the anti-tumor effect and mechanism of MDA-MB-231 cells. The GC-MS analysis identified a total of 33 compounds among which alkenes account for 63.55%. The prepared BP-EO NPs exhibited nanoscale morphology, good stability and pH-responsive and sustained release character which is suitable for in vivo delivery. BP-EO NPs significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells. Furthermore, BP-EO NPs significantly inhibited the expressions of Wnt and ß-catenin and significantly activated the expression of GSK-3ß in MDA-MB-231 cells. Therefore, BP-EO NPs prepared in this study provide a new effective strategy for the treatment of TNBC. PRACTICAL APPLICATIONS: Black pepper is rich in essential oil and has excellent antioxidant and antibacterial activities. However, the anti-tumor activity of BP-EO has not been studied. In this study, we found that BP-EO has excellent anticancer activity. To achieve effective encapsulation of black pepper essential oil and an excellent anti-triple negative breast cancer activity, nanoparticles loaded with BP-EO were prepared using Eudragit L100 as the carrier by the nanoprecipitation method. The in vitro study revealed that BP-EO NPs inhibited proliferation, migration and invasion of MDA-MB-231 cells via inhibiting the Wnt/ß-Catenin signaling pathway. This study provides new ideas and innovations for the treatment of invasive triple negative breast cancer in the future. At the same time, we will further reveal the application potential, pharmacokinetic characteristics and precise mechanism of BP-EO NPs in vivo in subsequent studies.


Asunto(s)
Nanopartículas , Aceites Volátiles , Piper nigrum , Neoplasias de la Mama Triple Negativas , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper nigrum/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Glucógeno Sintasa Quinasa 3 beta
16.
Iran J Basic Med Sci ; 25(4): 520-526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35656073

RESUMEN

Objectives: Diabetic gastroparesis (DGP) is one of the main complications of diabetes, and more than half of diabetes cases are accompanied by gastroparesis. This study aims to explore the effect of Atractylodes chinensis volatile oil (ACVO) on DGP rats. Materials and Methods: The rats were injected with STZ combined with a high-sugar and high-fat diet in an irregular manner to establish the DGP model. ACVO at different doses (9.11 mg/kg, 18.23 mg/kg, and 36.45 mg/kg) were given by intragastric administration. A mixture of cisapride and metformin was used as the positive control. At the end of the experiment, gastric emptying and intestinal propulsion were determined. Then the tissue samples and blood were taken from each group for serum analysis, western blot and immunopathological examination. Results: After treatment with ACVO, body weight increased and blood glucose decreased when compared with rats in the DGP group. Gastric emptying and intestinal propulsion were accelerated, and gastric acid secretion increased. The serum insulin-like growth factor-1 (IGF-1) level was increased. Protein expressions and positive cells of IGF-1 receptor (IGF-1R), acetylcholine transferase (CHAT), and stem cell factors (SCF) in the stomach were significantly increased determined by western blot and immunofluorescence staining. The morphology and the number of interstitial cells of Cajal (ICCs) in the stomach were restored, determined by hematoxylin and eosin staining and immunohistochemical staining, respectively. Conclusion: ACVO effectively alleviated DGP in rats, and its mechanism may be related to the up-regulation of IGF-1/IGF-1R signaling.

17.
Acta Pharm Sin B ; 12(3): 1225-1239, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530152

RESUMEN

The dysregulation of transcription factors is widely associated with tumorigenesis. As the most well-defined transcription factor in multiple types of cancer, c-Myc can transform cells by transactivating various downstream genes. Given that there is no effective way to directly inhibit c-Myc, c-Myc targeting strategies hold great potential for cancer therapy. In this study, we found that WSB1, which has a highly positive correlation with c-Myc in 10 cancer cell lines and clinical samples, is a direct target gene of c-Myc, and can positively regulate c-Myc expression, which forms a feedforward circuit promoting cancer development. RNA sequencing results from Bel-7402 cells confirmed that WSB1 promoted c-Myc expression through the ß-catenin pathway. Mechanistically, WSB1 affected ß-catenin destruction complex-PPP2CA assembly and E3 ubiquitin ligase adaptor ß-TRCP recruitment, which inhibited the ubiquitination of ß-catenin and transactivated c-Myc. Of interest, the effect of WSB1 on c-Myc was independent of its E3 ligase activity. Moreover, overexpressing WSB1 in the Bel-7402 xenograft model could further strengthen the tumor-driven effect of c-Myc overexpression. Thus, our findings revealed a novel mechanism involved in tumorigenesis in which the WSB1/c-Myc feedforward circuit played an essential role, highlighting a potential c-Myc intervention strategy in cancer treatment.

18.
Arch Biochem Biophys ; 725: 109269, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35508252

RESUMEN

Eugenol, an active ingredient of many medicinal aromatic plants, has been proved to have the hypolipidemic effect, but its potential mechanism of action is still unknown. This study aimed to investigate whether eugenol regulates liver lipid accumulation in high-fat diet (HFD) induced nonalcoholic fatty liver disease (NAFLD) rats via the gut-brain-liver axis involving glucagon-like peptide-1 (GLP-1). Hepatic vagotomy was performed in NAFLD rats to determine the role of eugenol in regulating hepatic lipid accumulation via vagus nerve. The results showed that after eight weeks of eugenol administration in NAFLD rats, serum total cholesterol (TC), triglyceride (TG) and hepatic TG decreased. However, eugenol showed no significant effect on the increased food intakes and weight gain caused by the HFD. Eugenol promoted the secretion of GLP-1 into the blood, increased GLP-1 receptor (GLP-1R) expression in the duodenum, liver, arcuate nucleus (ARC) and paraventricular nucleus (PVN), increased c-fos expression in the nucleus tractus solitarii (NTS), and promoted ZO-1 and occludin expression in duodenum. Furthermore, steatosis and lipid accumulation were significantly alleviated. Hepatic vagotomy partially attenuated the improvement of eugenol in hepatic lipid accumulation in NAFLD rats. In conclusion, eugenol regulates hepatic lipid metabolism via a gut-brain-liver axis involving in GLP-1, providing a new strategy for the treatment of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Eugenol/metabolismo , Eugenol/farmacología , Eugenol/uso terapéutico , Péptido 1 Similar al Glucagón/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas , Triglicéridos/metabolismo
19.
AAPS PharmSciTech ; 23(4): 100, 2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35348949

RESUMEN

Luteolin (Lu) is a kind of flavonoid that has been proved to treat non-alcoholic fatty liver disease by alleviating intestinal microbiota disorder. In this study, luteolin was coated with methoxy poly(ethylene glycol)-poly(dl-lactide-co-glycolic acid) (mPEG-PLGA) using an emulsion solvent evaporation method, and the optimum preparation process was determined by a single-factor experiment combined with response surface methodology (RSM). Methacrylic acid-methyl methacrylate (1:2) copolymer (Eudragit S100) was then used to coat the surface of Lu/mPEG-PLGA nanoparticles. The physical parameters of Eudragit S100-coated Lu/mPEG-PLGA nanoparticles (Lu-NPs), such as appearance, particle size, potential, particle size distribution and drug release, and stability in vitro, were evaluated. In addition, its cytotoxicity in vitro, pharmacokinetics, tissue distribution, and toxicity in vivo were also studied. The results showed that the prepared Lu-NPs had uniform particle size distribution, high encapsulation efficiency, and good stability. Normal colonic epithelial cells showed good tolerance to Lu-NPs. After oral administration, the blood concentration of luteolin peaked at 8 h, and the main tissue distribution was within the colon, confirming its colon-targeted profile. Safety assessments also indicated that no significant changes were observed in main organs after administration of Lu-NPs. The use of Eudragit S100-coated Lu/mPEG-PLGA nanoparticles is a new strategy for colon-targeted delivery of luteolin that encourages luteolin to fulfill its role in the colon.


Asunto(s)
Luteolina , Nanopartículas , Poliésteres , Polietilenglicoles/farmacocinética , Ácidos Polimetacrílicos
20.
J Oleo Sci ; 71(1): 95-104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35013040

RESUMEN

Pink lotus essential oil (PLEO) is the volatile components extracted from lotus flowers and there are few relevant research. The purpose of this study was to observe the effect of PLEO on NAFLD in vitro model and its possible mechanism. The ingredients of PLEO were determined by gas chromatography-mass spectrometry (GS-MS) and its lipid-lowering and hepatoprotective activities were investigated. HepG2 cells were treated with free fatty acid (FFA) to establish a cell model of NAFLD. Cell viability was evaluated by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. Total cholesterol (TC), triglyceride (TG), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) were determined by Enzyme-Linked Immune Sorbent Assay (ELISA). Oil red O staining was performed to observe the lipid accumulation in the HepG2 cells. Lipid metabolism enzymes including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), stearoyl-CoA desaturase 1 (SCD-1), and carnitine palmitoyltransferase-1 (CPT-1), insulin signaling pathways including phosphatidylinositol 3 kinase (PI3K) and protein kinase B Akt, inflammatory signaling pathways such as nuclear factor kappa-B (NF-κB), were determined by Western blotting. There were 46 components determined in PLEO with many terpenoids compounds. PLEO decreased TC and TG contents in the FFA-treated HepG2 cells. Furthermore, PLEO inhibited TNF-α, IL-6 and IL-1ß excretion, decreased NF-κB, FAS, ACC and SCD-1 while increased phosphorylation of NF-κB, PI3K, Akt, and CPT-1 expression. It is the first time to reveal that PLEO alleviates FFA-induced steatosis in HepG2 cells by regulating lipid metabolism, inhibiting inflammatory response, and improving insulin sensitivity.


Asunto(s)
Ácidos Grasos no Esterificados/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/prevención & control , Lotus/química , FN-kappa B/metabolismo , Aceites Volátiles/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hígado Graso/inducido químicamente , Hígado Graso/patología , Células Hep G2 , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Aceites Volátiles/aislamiento & purificación , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...