Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(48): 26412-26424, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988742

RESUMEN

This study combines machine learning (ML) and high-throughput calculations to uncover new ternary electrides in the A2BC2 family of compounds with the P4/mbm space group. Starting from a library of 214 known A2BC2 phases, density functional theory calculations were used to compute the maximum value of the electron localization function, indicating that 42 are potential electrides. A model was then trained on this data set and used to predict the electride behavior of 14,437 hypothetical compounds generated by structural prototyping. Then, the stability and electride features of the 1254 electride candidates predicted by the model were carefully checked by high-throughput calculations. Through this tiered approach, 41 stable and 104 metastable new A2BC2 electrides were predicted. Interestingly, all three kinds of electrides, i.e., electron-deficient, electron-neutral, and electron-rich electrides, are present in the set of predicted compounds. Three of the most promising new electrides (two electron-rich, Nd2ScSi2 and La2YbGe2, and one electron-deficient Y2LiSi2) were then successfully synthesized and characterized experimentally. Furthermore, the synthesized electrides were found to exhibit high catalytic activities for NH3 synthesis under mild conditions when Ru-loaded. The electron-deficient Y2LiSi2, in particular, was seen to exhibit a good balance of catalytic activity and chemical stability, suggesting its future application in catalysis.

2.
ChemSusChem ; 16(22): e202301016, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37584595

RESUMEN

Intermetallic electrides have recently drawn considerable attention due to their unique electronic structure and high catalytic performance for the activation of inert chemical bonds under mild conditions. However, the relationship between electride (anionic) electron abundance and catalytic performance is undefined; the key deciding factor for the performance of intermetallic electride catalysts remains to be addressed. Here, the secret behind electride catalysts La-TM-Si (TM=Co, Fe and Mn) with the same crystal structure but different anionic electrons was studied. Unexpectedly, LaCoSi with the least anionic electrons showed the best catalytic activity. The experiments and first-principles calculations showed that the electride anions promote the N2 dissociation which alters the rate-determining step (RDS) for ammonia synthesis on the studied electrides. Different reaction mechanisms were found for La-TM-Si (TM=Fe, Co) and LaMnSi. A dual-site module was revealed for LaCoSi and LaFeSi, in which transition metals were available for the N2 dissociation and La accelerates the NHx formation, respectively, breaking the Sabatier scaling relation. For LaMnSi, which is the most efficient for the N2 activation, the activity for ammonia synthesis is limited and confined by the scaling relations. The findings provide new insight into the working mechanism of intermetallic electrides.

3.
Angew Chem Int Ed Engl ; 62(36): e202308436, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37449563

RESUMEN

The practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of In from h-MAB Hf2 InB2 . The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

4.
Mater Horiz ; 10(7): 2506-2515, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37060143

RESUMEN

Elucidating the interactions between halide ions and bimetallic oxides can help understand their influences on the physicochemical properties of bimetallic oxides and ultimately lead to better performance, but this has not yet been explored. We report here the first study of the interaction of halide ions with two phase-pure bimetallic Ag-Cu oxides, Ag2Cu2O3 and Ag2Cu2O4, which have different chemical valences of Ag and Cu atoms. We found that halide ions have an aggressive etching effect on both bimetallic oxides, leading to a dramatic evolution of crystal structures and morphology. Halide ions act like "nano-carving knives", selectively etching out silver atoms to form silver halides and leaving a porous CuO skeleton. We revealed that Ag2Cu2O4 underwent a redox reaction with iodide ions (I-) to produce additional I3- in the solution, which was not observed in Ag2Cu2O3. Interestingly, according to the revealed interactions, both bimetallic oxides are confirmed as superior adsorbents to remove I- from wastewater in terms of a record-high uptake capacity, fast adsorption kinetics, and excellent selectivity for I-. Furthermore, such a halide etching can be turned into a powerful synthetic strategy. The out-etched silver halides were dissolved to give robust porous CuO nanostructures, which are proved to be excellent glucose-sensing electrodes with high sensitivity, excellent anti-interference, and stability, showing great application potential. This work contributes to improving the understanding of the mechanisms of halide ion-metal oxide interactions and ultimately to innovative applications.

5.
J Am Chem Soc ; 144(19): 8683-8692, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35507518

RESUMEN

Intermetallic electrides have recently shown their priority as catalyst components in ammonia synthesis and CO2 activation. However, their function mechanism has been elusive since its inception, which hinders the further development of such catalysts. In this work, ternary intermetallic electrides La-TM-Si (TM = Co, Fe, and Mn) were synthesized as hosts of ruthenium (Ru) particles for ammonia synthesis catalysis. Although they have the same crystal structure and possess low work functions commonly, the promotion effects on Ru particles rather differ from each other. The catalytic activity follows the sequence of Ru/LaCoSi > Ru/LaFeSi > Ru/LaMnSi. Furthermore, Ru/LaCoSi exhibits much better catalytic durability than the other two. A combination of experiments and first-principles calculations shows that apparent N2 activation energy on each catalyst is much lower than that over conventional Ru-based catalysts, which suggests that N2 dissociation can be conspicuously promoted by the concerted actions of the specific electronic structure and atomic configuration of intermetallic electride-supported catalysts. The NHx formations proceeded on La are energetically favored, which makes it possible to bypass the scaling relations based on only Ru as the active site. The rate-determining step of Ru/La-TM-Si was identified to be NH2 formation. The transition metal (TM) in La-TM-Si electrides has a significant influence on the metal-support interaction of Ru and La-TM-Si. These findings provide a guide for the development of new and effective catalyst hosts for ammonia synthesis and other hydrogenation reactions.

6.
Nanoscale ; 13(31): 13208-13214, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34477727

RESUMEN

The newly discovered hexagonal MAB (h-MAB) phases have shown great promise in synthesizing 2-D borides, but wide application is hindered by the limited kinds of transition metals that can be involved. In this work, an extensive structure search was performed to identify stable quaternary h-MAB phases by alloying ternary h-MAB phases with a fourth component. The predicted 22 stable quaternary h-MAB phases reveal that there is plenty of room for further exploration of new materials by element alloying. Moreover, we theoretically proved the possibility of exfoliating h-MBenes from the predicted quaternary phases through the selective removal of A components. The simulations for the hydrogen evolution reaction (HER) revealed that the bi-metal combination demonstrates a great advantage to enrich the application perspectives of h-MBenes. The discovery of quaternary h-MAB phases and two-dimensional derivatives offers new insights and understanding of boride-based materials.

7.
J Am Chem Soc ; 143(23): 8821-8828, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34096289

RESUMEN

Electrides have been identified so far by two major routes: one is conversion of elemental metals and stoichiometric compounds by high pressure; the other is to search for electron-rich compounds, and this approach is more general. In contrast, few electron-deficient structures in existing databases have been revealed as potential electride candidates. In this work, we found an electron-deficient compound Ca5Pb3 could be transformed into electrides upon applying external pressure or strain along the c-axis, which induces the electron immigration from Pb to interstitial sites. Furthermore, the electron doping via Hf substitution of Ca atoms for Ca5Pb3 was found to be capable of tuning the interstitial electron density under ambient pressure, resulting in a new stable ternary electride Ca3Hf2Pb3, Hf-substituted Ca5Pb3. The electron-deficient electride discovered here is of novel type and can largely expand the research scope of electrides. Considering a recently reported neutral electride Na3N and the present finding, it is now clarified that electrides can be identified irrespective of stoichiometry (electron-rich, -neutral, or -poor) for compounds.

8.
Nat Commun ; 11(1): 1020, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094365

RESUMEN

Single-atom catalysts (SACs) have attracted significant attention because they exhibit unique catalytic performance due to their ideal structure. However, maintaining atomically dispersed metal under high temperature, while achieving high catalytic activity remains a formidable challenge. In this work, we stabilize single platinum atoms within sub-nanometer surface cavities in well-defined 12CaO·7Al2O3 (C12A7) crystals through theoretical prediction and experimental process. This approach utilizes the interaction of isolated metal anions with the positively charged surface cavities of C12A7, which allows for severe reduction conditions up to 600 °C. The resulting catalyst is stable and highly active toward the selective hydrogenation of nitroarenes with a much higher turnover frequency (up to 25772 h-1) than well-studied Pt-based catalysts. The high activity and selectivity result from the formation of stable trapped single Pt atoms, which leads to heterolytic cleavage of hydrogen molecules in a reaction that involves the nitro group being selectively adsorbed on C12A7 surface.

9.
Chem Commun (Camb) ; 56(2): 229-232, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31803876

RESUMEN

Ordered mesoporous polymers and carbon with a nano-ellipsoid morphology were synthesized by hydrothermal carbonization of biomass derivatives. Their multifunctional features have been demonstrated and the ability of encapsulating metal nanoparticles (NPs) is presented. With the merits of porosity and anchored metal NPs, the hybrid nanocatalyst shows potential for shape-selective hydrogenation.


Asunto(s)
Biomasa , Carbono/química , Nanopartículas del Metal/química , Catálisis , Platino (Metal)/química , Porosidad
10.
Nat Commun ; 10(1): 2284, 2019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31123253

RESUMEN

Mn+1AXn phases are a large family of compounds that have been limited, so far, to carbides and nitrides. Here we report the prediction of a compound, Ti2InB2, a stable boron-based ternary phase in the Ti-In-B system, using a computational structure search strategy. This predicted Ti2InB2 compound is successfully synthesized using a solid-state reaction route and its space group is confirmed as P[Formula: see text]m2 (No. 187), which is in fact a hexagonal subgroup of P63/mmc (No. 194), the symmetry group of conventional Mn+1AXn phases. Moreover, a strategy for the synthesis of MXenes from Mn+1AXn phases is applied, and a layered boride, TiB, is obtained by the removal of the indium layer through dealloying of the parent Ti2InB2 at high temperature under a high vacuum. We theoretically demonstrate that the TiB single layer exhibits superior potential as an anode material for Li/Na ion batteries than conventional carbide MXenes such as Ti3C2.

11.
Angew Chem Int Ed Engl ; 58(3): 825-829, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30466170

RESUMEN

Electrides loaded with transition-metal (TM) nanoparticles have recently attracted attention as emerging materials for catalytic NH3 synthesis. However, they suffer from disadvantages associated with the growth and aggregation of nanoparticles. TM-containing intermetallic electrides appear to be promising catalysts with the advantages of both electrides and transition metals in a single phase. LaRuSi is reported here to be an intermetallic electride with superior activity for NH3 synthesis, and direct evidence is provided supporting its electride-character-induced catalytic performance. The discussion is made mainly based on the contrasting synthesis rates over the isostructural compounds LaRuSi, CaRuSi, and LaRu2 Si2 , and the N2 isotope-exchange reactions over these compounds. Lattice hydride ions, which can reversibly exchange with anionic electrons, are shown to be indispensable in the promotion of NHx formation. The mechanism derived from the present findings provides new guidelines for NH3 synthesis.

12.
Adv Mater ; 29(36)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28758714

RESUMEN

Electrides-compounds in which electrons localized in interstitial spaces periodically serve as anions-have attracted broad attention for their exotic properties, such as extraordinary electron-donating ability. In our efforts to expand this small family of phases, LaScSi emerges as a promising candidate. Its electron count is 2e- f.u.-1 in excess of that expected from the Zintl concept, while its structure offers interstitial spaces that can accommodate these extra electrons. Herein, this potential is explored through density functional theory (DFT) calculations and property measurements on LaScSi. DFT calculations (validated by heat capacity and electrical transport measurements) reveal electron density peaks at two symmetry-distinct interstitial sites. Importantly, this electride-like character is combined with chemical stability in air and water, an advantage for catalysis. Ru-loaded LaScSi shows outstanding catalytic activity for ammonia synthesis, with a turnover frequency (0.1 s-1 at 0.1 MPa, 400 °C) an order of magnitude higher than those of oxide-based Ru catalysts, e.g., Ru/MgO. As with other electrides, LaScSi's ability to reversibly store hydrogen prevents the hydrogen poisoning of Ru surfaces. The better performance of LaScSi, however, hints at the importance of the high concentration (>1.6 × 1022 cm-3 ) and tiered nature of its anionic electrons, which offers guidance toward new catalysts.

13.
Chem Commun (Camb) ; 51(64): 12859-62, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26169442

RESUMEN

Graphitic carbon nanotubes (GCNTs) were fabricated from in situ produced graphitic carbon by calcining biomass/melamine/Ni(NO3)2·6H2O. Ni-based hybrids (NiOx@GCNTs) displayed superior catalytic capacity in direct dehydrogenation of ethylbenzene. The specific reaction rate can reach up to 8.1 µmol m(-2) h(-1), and unprecedented stability was obtained over 165 h without any activation process.

14.
ChemSusChem ; 8(6): 931-46, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25688746

RESUMEN

With the explosive growth of energy consumption, the exploration of highly efficient energy conversion and storage devices becomes increasingly important. Fuel cells, supercapacitors, and lithium-ion batteries are among the most promising options. The innovation of these devices mainly resides in the development of high-performance electrode materials and catalysts. Graphitic carbon nitride (g-C3 N4 ), due to structural and chemical properties such as semiconductor optical properties, rich nitrogen content, and tunable porous structure, has drawn considerable attention and shown great potential as an electrode material or catalyst in energy conversion and storage devices. This review covers recent progress in g-C3 N4 -containing systems for fuel cells, electrocatalytic water splitting devices, supercapacitors, and lithium-ion batteries. The corresponding catalytic mechanisms and future research directions in these areas are also discussed.


Asunto(s)
Fuentes Generadoras de Energía , Nitrilos/química , Suministros de Energía Eléctrica , Electroquímica , Litio/química , Agua/química
15.
Chem Commun (Camb) ; 50(84): 12633-6, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25199065

RESUMEN

Monodisperse, uniform colloidal carbonaceous spheres were fabricated by the hydrothermal treatment of glucose with the help of a tiny amount of sodium polyacrylate (PAANa). This synthetic strategy is effective at high glucose concentration and for scale-up experiments. The sphere size can be easily tuned by the reaction time, temperature and glucose concentration.

16.
Sci Rep ; 4: 6349, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25215549

RESUMEN

Fabrication of hierarchically porous carbon materials (HPCs) with high surface area and pore volume has always been pursued. However, the currently effective template methods and acid/base activation strategies suffer from the drawbacks of either high costs or tedious steps. Herein, HPCs with 3D macro-mesopores and short-range meso-micropores were fabricated via an easy and sustainable two-step method from biomass. Macro-mesopores were constructed by slightly accumulation/aggregation of carbon spheres ranging from 60 nm to 80 nm, providing efficient mass diffusion pathways. Short-range mesopores and micropores with high electrolyte accessibility were developed in these spheres by air activation. The obtained HPCs showed surface area values up to 1306 m(2)/g and high mesopore volume proportion (63.9%). They demonstrated excellent capacitance and low equivalent series resistance (ESR) as supercapacitor electrode materials, suggesting the efficient diffusion and adsorption of electrolyte ions in the designed hierarchically porous structure.

17.
ACS Appl Mater Interfaces ; 6(15): 12515-22, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25001196

RESUMEN

The development of meaningful ways to transfer biomass into useful materials, more efficient energy carriers, and/or carbon storage deposits is a profound challenge of our days. Herein, an ionothermal carbonization (ITC) method, via treating natural resources (glucose, cellulose, and sugar cane bagesse) in nonmetal ionic liquids (ILs) at ∼200 °C, is established for the fabrication of porous heteroatom-doped carbon materials with high yield. Commercial ILs with bulky bis(trifluoromethylsulfonyl)imide anion or cross-linkable nitrile group were found to be efficient and recyclable templates for porosity control, leading to exciting nanoarchitectures with promising performance in oxygen reduction reaction. The optimized ILs (12 mL) can dissolve and directly convert up to 15 g of glucose into porous carbon materials (SBET: 272 m(2)/g) one time. This ITC method relies on the synergistic use of structure-directing effect, good biomass solubility, and excellent thermal stability of ILs, and provides a sustainable strategy for exploiting biomass.


Asunto(s)
Biomasa , Carbono/química , Líquidos Iónicos/química , Temperatura , Celulosa/química , Electroquímica , Glucosa/química , Nitrógeno/química , Saccharum/química
18.
ChemSusChem ; 7(8): 2303-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24757098

RESUMEN

Due to their versatile features and environmental friendliness, functionalized carbon materials show great potential in practical applications, especially in energy conversion. Developing carbon composites with properties that can be modulated by simply changing the ratio of the original materials is an intriguing synthetic strategy. Here, we took cyanamide and multiwalled carbon nanotubes as precursors and introduced a facile method to fabricate a series of graphitic carbon nitride/carbon nanotubes (g-C3 N4 /CNTs) composites. These composites demonstrated different practical applications with different weight ratios of the components, that is, they showed synergistic effects in optoelectronic conversion when g-C3 N4 was the main ingredient and in oxygen reduction reaction (ORR) when CNTs dominated the composites. Our experiments indicated that the high electrical conductivity of carbon nanotubes promoted the transmission of the charges in both cases.


Asunto(s)
Transferencia de Energía , Nanotubos de Carbono/química , Nitrilos/química , Catálisis , Nanocompuestos/química , Oxígeno/química
19.
Nat Commun ; 4: 1593, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23481401

RESUMEN

The development of efficient systems for selective aerobic oxidation of hydrocarbons and alcohols to produce more functional compounds (aldehydes, ketones, acids or esters) with atmospheric air or molecular oxygen is a grand challenge for the chemical industry. Here we report the synthesis of palladium nanoparticles supported on novel nanoporous nitrogen-doped carbon, and their impressive performance in the controlled oxidation of hydrocarbons and alcohols with air. In terms of catalytic activity, these catalysts afford much higher turnover frequencies (up to 863 turnovers per hour for hydrocarbon oxidation and up to ~210,000 turnovers per hour for alcohol oxidation) than most reported palladium catalysts under the same reaction conditions. This work provides great potential for the application of ambient air and recyclable palladium catalysts in fine-chemical production with high activity.


Asunto(s)
Alcoholes/química , Carbono/química , Glucosa/química , Hidrocarburos/química , Nitrógeno/química , Paladio/química , Solventes/química , Aerobiosis , Aire , Catálisis , Cinética , Nanoestructuras/ultraestructura , Oxidación-Reducción , Oxígeno/química , Espectroscopía de Fotoelectrones , Factores de Tiempo
20.
J Am Chem Soc ; 134(41): 16987-90, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23030399

RESUMEN

We report a catalyst made of Pd nanoparticles (NPs) supported on mesoporous N-doped carbon, Pd@CN(0132), which was shown to be highly active in promoting biomass refining. The use of a task-specific ionic liquid (3-methyl-1-butylpyridine dicyanamide) as a precursor and silica NPs as a hard template afforded a high-nitrogen-content (12 wt %) mesoporous carbon material that showed high activity in stabilizing Pd NPs. The resulting Pd@CN(0.132) catalyst showed very high catalytic activity in hydrodeoxygenation of vanillin (a typical model compound of lignin) at low H(2) pressure under mild conditions in aqueous media. Excellent catalytic results (100% conversion of vanillin and 100% selectivity for 2-methoxy-4-methylphenol) were achieved, and no loss of catalytic activity was observed after six recycles.


Asunto(s)
Biocombustibles , Carbono/química , Nanopartículas del Metal/química , Nitrógeno/química , Paladio/química , Catálisis , Líquidos Iónicos/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...