Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1200054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377924

RESUMEN

Introduction: Colon adenocarcinoma (COAD) is a special pathological subtype of colorectal cancer (CRC) with highly heterogeneous solid tumors with poor prognosis, and novel biomarkers are urgently required to guide its prognosis. Material and methods: RNA-Seq data of COAD were downloaded through The Cancer Genome Atlas (TCGA) database to determine cuproptosis-related lncRNAs (CRLs) using weighted gene co-expression network analysis (WGCNA). The scores of the pathways were calculated by single-sample gene set enrichment analysis (ssGSEA). CRLs that affected prognoses were determined via the univariate COX regression analysis to develop a prognostic model using multivariate COX regression analysis and LASSO regression analysis. The model was assessed by applying Kaplan-Meier (K-M) survival analysis and receiver operating characteristic curves and validated in GSE39582 and GSE17538. The tumor microenvironment (TME), single nucleotide variants (SNV), and immunotherapy response/chemotherapy sensitivity were assessed in high- and low-score subgroups. Finally, the construction of a nomogram was adopted to predict survival rates of COAD patients during years 1, 3, and 5. Results: We found that a high cuproptosis score reduced the survival rates of COAD significantly. A total of five CRLs affecting prognosis were identified, containing AC008494.3, EIF3J-DT, AC016027.1, AL731533.2, and ZEB1-AS1. The ROC curve showed that RiskScore could perform well in predicting the prognosis of COAD. Meanwhile, we found that RiskScore showed good ability in assessing immunotherapy and chemotherapy sensitivity. Finally, the nomogram and decision curves showed that RiskScore would be a powerful predictor for COAD. Conclusion: A novel prognostic model was constructed using CRLs in COAD, and the CRLs in the model were probably a potential therapeutic target. Based on this study, RiskScore was an independent predictor factor, immunotherapy response, and chemotherapy sensitivity for COAD, providing a new scientific basis for COAD prognosis management.

2.
Biol Direct ; 17(1): 19, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902970

RESUMEN

BACKGROUND: Cancer metabolism is largely altered compared to normal cells. This study aims to explore critical metabolism pathways in colon adenocarcinoma (COAD), and reveal the possible mechanism of their role in cancer progression. METHODS: Expression data and sequencing data of COAD samples were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. The expression profiles between tumor and normal samples were compared to identify differential metabolism pathways through single sample gene set enrichment analysis. RESULTS: Fatty acid synthesis was identified as a key metabolism pathway in COAD. Based on fatty acid-related lncRNAs, two molecular subtypes (C1 and C2) were defined. C2 subtype with worse prognosis had higher immune infiltration and higher expression of immune checkpoints. Five transcription factors (TFs) including FOS, JUN, HIF1A, STAT3 and STAT2 were highly expressed in C2 subtype. Five fatty acid-related lncRNAs were identified to be biomarkers for predicting COAD prognosis. Finally, further experients showed that knockdown of lncRNA PAXIP1-AS1 decreased the triglyceride content and the fatty acid synthase and acetyl-CoA carboxylase 1 expressions, which suggested that lncRNA PAXIP1-AS1 plays an important role in fatty acid metabolism of COAD. CONCLUSIONS: This study demonstrated that fatty acid synthesis was greatly altered in COAD. Fatty acid-related lncRNAs were speculated to be involved in cancer progression through associating with TFs. The five screened TFs may serve as new drug targets for treating COAD.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , ARN Largo no Codificante , Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ARN Largo no Codificante/genética , Microambiente Tumoral/genética
3.
Cell Mol Life Sci ; 79(6): 343, 2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35661930

RESUMEN

Gemcitabine is commonly used to treat various cancer types, including human non-small cell lung cancer (NSCLC). However, even cases that initially respond rapidly commonly develop acquired resistance, limiting our ability to effectively treat advanced NSCLC. To gain insight for developing a strategy to overcome gemcitabine resistance, the present study investigated the mechanism of gemcitabine resistance in NSCLC according to the involvement of ATP-binding cassette subfamily B member 6 (ABCB6) and heme biosynthesis. First, an analysis of ABCB6 expression in human NSCLCs was found to be associated with poor prognosis and gemcitabine resistance in a hypoxia-inducible factor (HIF)-1-dependent manner. Further experiments showed that activation of HIF-1α/ABCB6 signaling led to intracellular heme metabolic reprogramming and a corresponding increase in heme biosynthesis to enhance the activation and accumulation of catalase. Increased catalase levels diminished the effective levels of reactive oxygen species, thereby promoting gemcitabine-based resistance. In a mouse NSCLC model, inhibition of HIF-1α or ABCB6, in combination with gemcitabine, strongly restrained tumor proliferation, increased tumor cell apoptosis, and prolonged animal survival. These results suggest that, in combination with gemcitabine-based chemotherapy, targeting HIF-1α/ABCB6 signaling could result in enhanced tumor chemosensitivity and, thus, may improve outcomes in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Transportadoras de Casetes de Unión a ATP , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Catalasa/metabolismo , Catalasa/uso terapéutico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Hemo/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Factor 1 Inducible por Hipoxia/uso terapéutico , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Gemcitabina
4.
Chem Asian J ; 16(7): 837-844, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33617683

RESUMEN

The porous polymer matrix with good stability and confined microenvironment is considered as ideal support to stabilize isolated metal centers for catalysis. Herein, we report a "one-pot" method to prepare a kind of palladium complexed with azo porous organic polymer nanospheres (Pd-azo-POPs). The method combines the synthesis of azo-POPs with the reduction of the Pd ion, where azo serves as an anchoring group to limit the growth of Pd. The unique structure is conductive to the formation of a uniform active center and provides improved electron transfer. Pd-azo-POPs-80 exhibits a high catalytic activity and cycling stability both in 4-nitrophenol reduction and Suzuki-Miyaura coupling. The knor for the 4-nitrophenol reduction was 174.7 min-1 mM-1 and the conversion remains above 90% after 6 cycles. Meanwhile, the yield was still up to 94.5% after 5 cycles for the Suzuki-Miyaura coupling reaction of benzene derivatives with I/Br under mild conditions.

5.
Cell Biosci ; 10: 113, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983407

RESUMEN

BACKGROUND: Angiogenesis is a critical step in the growth of pancreatic neuroendocrine tumors (PNETs) and may be a selective target for PNET therapy. However, PNETs are robustly resistant to current anti-angiogenic therapies that primarily target the VEGFR pathway. Thus, the mechanism of PNET angiogenesis urgently needs to be clarified. METHODS: Dataset analysis was used to identify angiogenesis-related genes in PNETs. Immunohistochemistry was performed to determine the relationship among Neuropilin 2 (NRP2), VEGFR2 and CD31. Cell proliferation, wound-healing and tube formation assays were performed to clarify the function of NRP2 in angiogenesis. The mechanism involved in NRP2-induced angiogenesis was detected by constructing plasmids with mutant variants and performing Western blot, and immunofluorescence assays. A mouse model was used to evaluate the effect of the NRP2 antibody in vivo, and clinical data were collected from patient records to verify the association between NRP2 and patient prognosis. RESULTS: NRP2, a VEGFR2 co-receptor, was positively correlated with vascularity but not with VEGFR2 in PNET tissues. NRP2 promoted the migration of human umbilical vein endothelial cells (HUVECs) cultured in the presence of conditioned medium PNET cells via a VEGF/VEGFR2-independent pathway. Moreover, NRP2 induced F-actin polymerization by activating the actin-binding protein cofilin. Cofilin phosphatase slingshot-1 (SSH1) was highly expressed in NRP2-activating cofilin, and silencing SSH1 ameliorated NRP2-activated HUVEC migration and F-actin polymerization. Furthermore, blocking NRP2 in vivo suppressed PNET angiogenesis and tumor growth. Finally, elevated NRP2 expression was associated with poor prognosis in PNET patients. CONCLUSION: Vascular NRP2 promotes PNET angiogenesis by activating the SSH1/cofilin/actin axis. Our findings demonstrate that NRP2 is an important regulator of angiogenesis and a potential therapeutic target of anti-angiogenesis therapy for PNET.

6.
Nanoscale ; 12(11): 6472-6479, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32154535

RESUMEN

Metallic sulfides have emerged as highly active, durable, and robust electrocatalysts for the electrocatalytic hydrogen evolution reaction (HER) due to their intriguing electronic and catalytic properties. One of the important strategies to further enhance their HER performance is to build multimetallic nanostructures by tuning the electronic state. Here we combine multimetallic structures and metal sulfides, and report an efficient strategy for the in situ surface-derivation of molybdenum sulfide nanosheets (MoS2 NSs) on Ag-Pd-Mo alloy nanowires (AgPdMo NWs) to form AgPdMo/MoS2 NWs. The heterostructure incorporates AgPdMo NWs with high conductivity and MoS2 NSs with abundant active sites, which act synergistically in alkaline solution. The as-tuned AgPdMo/MoS2 NWs exhibit Pt-like electrocatalytic performance for the HER, with a small overpotential of 54 mV at a current density of 10 mA cm-2 and a low Tafel slope of 72 mV dec-1. The present work demonstrates a potential strategy for designing heterostructures with multimetallic composition by in situ surface-derivation with enhanced performance in water splitting.

7.
Nanoscale Adv ; 2(4): 1583-1589, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132318

RESUMEN

Effective alcohol detection represents a substantial concern not only in the context of personal and automobile safety but also in clinical settings as alcohol is a contributing factor in a wide range of health complications including various types of liver cirrhoses, strokes, and cardiovascular diseases. Recently, many kinds of nanomaterials with enzyme-like properties have been widely used as biosensors. Herein, we have developed a convenient detection method that combines Au@PtRu nanozymes and alcohol oxidase (AOx). We found that the Au@PtRu nanorods exhibited peroxidase-like catalytic activity that was much higher than the catalytic activities of the Au and Au@Pt nanorods. The Au@PtRu nanorod-catalyzed generation of hydroxyl radicals in the presence of H2O2 was used to develop an alcohol sensor by monitoring the H2O2 formed by the oxidation of alcohol to acetaldehyde in the presence of AOx. When coupled with AOx, alcohol was detected down to 23.8 µM in a buffer solution for biological assays. Notably, alcohol was successfully detected in mouse blood samples with results comparable to that from commercial alcohol meters. These results highlight the potential of the Au@PtRu nanorods with peroxidase-like activity for alcohol detection, which opens up a new avenue for nanozyme development for biomedical applications.

8.
Adv Ther ; 36(8): 1986-1998, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31209700

RESUMEN

INTRODUCTION: To assess the risk factors associated with regorafenib-related adverse events (AEs) in metastatic colorectal cancer (mCRC) and gastrointestinal stromal tumors (GIST). We also evaluated different measures of combatting AEs and their success rate to aid physicians in early identification and management of reported AEs. METHODS: A literature search was conducted through the electronic databases PubMed, Embase, and Cochrane Central Register of Controlled Trials up to May 2018 according to the pre-specified inclusion and exclusion criteria. Pooled estimates with Pearson correlation were obtained with fixed or random-effects models. RESULTS: From our analysis, it was evident that AEs were more common in patients aged less than 65 years compared to those aged at least 65 years (71.3% vs. 27.6%, p = 0.001). A statistically significant correlation was observed between the occurrence of AEs and a dose of 160 mg (r = 0.967; p = 0.001) while no significant correlation was found at 120 mg and 80 mg. The common measures used to manage AEs included lowering the regorafenib dose (41%), intermittent drug withdrawal (66.7%), and complete drug withdrawal (19%). About 57% of patients recovered from AE after their initiating dose was lowered. CONCLUSION: Regorafenib-associated AEs are more common at an initiating dose of 160 mg. Considering that the efficacy depends on the dosage, 120 mg might be a better choice for mCRC and GIST patients; further studies are needed to validate the results of our analysis. Further prompt identification and management of AEs are required to help the patients continue with drug therapy.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/terapia , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Compuestos de Fenilurea/efectos adversos , Compuestos de Fenilurea/uso terapéutico , Piridinas/efectos adversos , Piridinas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
9.
Biomater Sci ; 7(7): 2833-2840, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31066733

RESUMEN

Bacteria can increase drug resistance by forming bacterial biofilms. Once the biofilm is formed, it becomes difficult to remove or kill the related bacteria completely by antibiotics and other antibacterial agents because these antibacterial agents cannot easily break through the biofilm matrix barrier and reach the internal bacteria. Therefore, we synthesized magnetite hybrid nanocomplexes that can penetrate and disrupt bacterial biofilms. The obtained nanocomposites are composed of multinucleated iron oxides and Ag seeds. The outer iron oxides can help the internal Ag nanoparticles penetrate the bacterial biofilms, hence killing the internal bacteria and disrupting the biofilms. We took advantage of E. coli and P. aeruginosa bacteria to test the antibacterial properties of the magnetite hybrid nanocomplexes. When planktonic E. coli and P. aeruginosa bacteria were incubated with 100 µg mL-1 magnetite hybrid nanocomplexes for 30 min, almost all the bacteria were killed. When the obtained biofilms of E. coli and P. aeruginosa were treated with magnetite hybrid nanocomplexes (10 µg mL-1 and 100 µg mL-1), the survival of E. coli and P. aeruginosa biofilms with a magnetic field showed a big decrease compared with that without a magnetic field. Therefore, the as-synthesized nanocomposites have promising potential as antimicrobial agents for killing bacteria and disrupting biofilms in the presence of a magnetic field, and thus should be further studied for a wide range of antibacterial applications.


Asunto(s)
Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Óxido Ferrosoférrico/síntesis química , Óxido Ferrosoférrico/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Ensayo de Materiales , Nanopartículas del Metal/química , Ratones , Células 3T3 NIH , Nanotecnología , Plata/química
10.
Biomed Res Int ; 2017: 2010512, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29279843

RESUMEN

Fluorescence planar imaging (FPI) is failure to capture high resolution images of deep fluorochromes due to photon diffusion. This paper presents an image restoration method to deal with this kind of blurring. The scheme of this method is conceived based on a reconstruction method in fluorescence molecular tomography (FMT) with diffusion model. A new unknown parameter is defined through introducing the first mean value theorem for definite integrals. System matrix converting this unknown parameter to the blurry image is constructed with the elements of depth conversion matrices related to a chosen plane named focal plane. Results of phantom and mouse experiments show that the proposed method is capable of reducing the blurring of FPI image caused by photon diffusion when the depth of focal plane is chosen within a proper interval around the true depth of fluorochrome. This method will be helpful to the estimation of the size of deep fluorochrome.


Asunto(s)
Colorantes Fluorescentes/química , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Óptica/métodos , Algoritmos , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
11.
Biomed Opt Express ; 8(3): 1466-1476, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663842

RESUMEN

Fluorescence imaging is a widely used in vivo optical imaging technique for preclinical studies, but strong tissue autofluorescence and external excitation light make it suffer from a low signal-to-noise ratio (SNR). Recently, a new optical imaging method using persistent luminescence has become of interest due to its advantage of circumvention of autofluorescence and bleed-through of excitation light during signal acquisition. In this work, we proposed a tomographic imaging method based on persistent luminescence named persistent luminescence tomography (PLT), which can obtain three dimensional distributions of persistent luminescence probes deep inside small animals. Persistent luminescence signals can last several hours after excitation, which makes it possible for PLT to collect signals without interference by autofluorescence and bleed-through of excitation light, and then to reconstruct tomographic images of high quality. Phantom and mouse experiments are implemented to verify the feasiblity of PLT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA