Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
1.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39229056

RESUMEN

Three-dimensional (3D) ex vivo imaging of cleared intact brains of animal models and large human and non-human primate postmortem brain specimens is important for understanding the physiological neural network connectivity patterns and the pathological alterations underlying neuropsychiatric and neurological disorders. Light-sheet microscopy has emerged as a highly effective imaging modality for rapid high-resolution imaging of large cleared samples. However, the orthogonal arrangements of illumination and detection optics in light sheet microscopy limits the size of specimen that can be imaged. Recently developed light sheet theta microscopy (LSTM) technology addressed this by utilizing a unique arrangement of two illumination light paths oblique to the detection light path, while allowing perpendicular arrangement of the detection light path relative to the specimen surface. Here, we report development of a next-generation, fully integrated, and user-friendly LSTM system for rapid sub-cellular resolution imaging uniformly throughout a large specimen without constraining the lateral (XY) size. In addition, we provide a seamlessly integrated workflow for image acquisition, data storage, pre- and post-processing, enhancement, and quantitative analysis. We demonstrate the system performance by high-resolution 3D imaging of intact mouse brains and human brain samples, and complete data analysis including digital neuron tracing, vessel reconstruction and design-based stereological analysis in 3D. This technically enhanced and user-friendly LSTM implementation will enable rapid quantitative mapping of molecular and cellular features of interests in diverse types of very large samples.

2.
Nat Biomed Eng ; 8(9): 1109-1123, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39209948

RESUMEN

Light-sheet fluorescence microscopy (LSFM) is a widely used technique for imaging cleared tissue and living samples. However, high-performance LSFM systems are typically expensive and not easily scalable. Here we introduce a low-cost, scalable and versatile LSFM framework, which we named 'projected light-sheet microscopy' (pLSM), with high imaging performance and small device and computational footprints. We characterized the capabilities of pLSM, which repurposes readily available consumer-grade components, optimized optics, over-network control architecture and software-driven light-sheet modulation, by performing high-resolution mapping of cleared mouse brains and of post-mortem pathological human brain samples, and via the molecular phenotyping of brain and blood-vessel organoids derived from human induced pluripotent stem cells. We also report a method that leverages pLSM for the live imaging of the dynamics of sparsely labelled multi-layered bacterial pellicle biofilms at an air-liquid interface. pLSM can make high-resolution LSFM for biomedical applications more accessible, affordable and scalable.


Asunto(s)
Encéfalo , Células Madre Pluripotentes Inducidas , Microscopía Fluorescente , Animales , Humanos , Microscopía Fluorescente/métodos , Ratones , Encéfalo/diagnóstico por imagen , Células Madre Pluripotentes Inducidas/citología , Organoides/diagnóstico por imagen , Biopelículas
3.
J Exp Clin Cancer Res ; 43(1): 232, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160604

RESUMEN

BACKGROUND: Tumor recurrence and mortality rates remain challenging in cancer patients despite comprehensive treatment. Neoadjuvant chemotherapy and immunotherapy aim to eliminate residual tumor cells, reducing the risk of recurrence. However, drug resistance during neoadjuvant therapy is a significant hurdle. Recent studies suggest a correlation between RNA methylation regulators (RMRs) and response to neoadjuvant therapy. METHODS: Using a multi-center approach, we integrated advanced techniques such as single-cell transcriptomics, whole-genome sequencing, RNA sequencing, proteomics, machine learning, and in vivo/in vitro experiments. Analyzing pan-cancer cohorts, the association between neoadjuvant chemotherapy/immunotherapy effectiveness and RNA methylation using single-cell sequencing was investigated. Multi-omics analysis and machine learning algorithms identified genomic variations, transcriptional dysregulation, and prognostic relevance of RMRs, revealing distinct molecular subtypes guiding pan-cancer neoadjuvant therapy stratification. RESULTS: Our analysis unveiled a strong link between neoadjuvant therapy efficacy and RNA methylation dynamics, supported by pan-cancer single-cell sequencing data. Integration of omics data and machine learning algorithms identified RMR genomic variations, transcriptional dysregulation, and prognostic implications in pan-cancer. High-RMR-expressing tumors displayed increased genomic alterations, an immunosuppressive microenvironment, poorer prognosis, and resistance to neoadjuvant therapy. Molecular investigations and in vivo/in vitro experiments have substantiated that the JAK inhibitor TG-101,209 exerts notable effects on the immune microenvironment of tumors, rendering high-RMR-expressing pan-cancer tumors, particularly in pancreatic cancer, more susceptible to chemotherapy and immunotherapy. CONCLUSIONS: This study emphasizes the pivotal role of RMRs in pan-cancer neoadjuvant therapy, serving as predictive biomarkers for monitoring the tumor microenvironment, patient prognosis, and therapeutic response. Distinct molecular subtypes of RMRs aid individualized stratification in neoadjuvant therapy. Combining TG-101,209 adjuvant therapy presents a promising strategy to enhance the sensitivity of high-RMR-expressing tumors to chemotherapy and immunotherapy. However, further validation studies are necessary to fully understand the clinical utility of RNA methylation regulators and their impact on patient outcomes.


Asunto(s)
Terapia Neoadyuvante , Neoplasias , Humanos , Terapia Neoadyuvante/métodos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Resistencia a Antineoplásicos/genética , Animales , Ratones , Pronóstico , Microambiente Tumoral , Metilación de ARN
4.
Materials (Basel) ; 17(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39203145

RESUMEN

Refractory materials are an important pillar for the stable development of the high-temperature industry. A large amount of waste refractories needs to be further disposed of every year, so it is of great significance to carry out research on the recycling of used refractories. In this work, lightweight composite aggregate was prepared by using discarded Al2O3-ZrO2-C refractories as the main raw material, and the performance of the prepared lightweight aggregate was improved by adjusting the calcination temperature and introducing light calcined magnesia additives. The results showed that the cold compressive strength and thermal shock resistance of the lightweight aggregates were significantly improved with increasing calcination temperature. Moreover, the introduction of light calcined magnesia can effectively improve the apparent porosity, cold compressive strength, and thermal shock resistance of the prepared lightweight aggregates at the calcination temperature of 1400 °C. Consequently, this work provides a useful reference for the resource utilization of used refractories, while the prepared lightweight aggregates are expected to be applied in the field of high-temperature insulation.

5.
Brain Behav Immun ; 122: 185-201, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142420

RESUMEN

Amyloid-ß (Aß) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aß or tau. However, due to the complexity of both Aß and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aß peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactic dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aß and tau epitopes warrant further study for treating early-stage AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Proteínas tau , Animales , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/prevención & control , Proteínas tau/inmunología , Proteínas tau/metabolismo , Péptidos beta-Amiloides/inmunología , Péptidos beta-Amiloides/metabolismo , Ratones , Humanos , Vacunas contra el Alzheimer/inmunología , Vacunas contra el Alzheimer/administración & dosificación , Encéfalo/metabolismo , Femenino , Epítopos/inmunología , Nanopartículas , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/administración & dosificación , Anticuerpos , Vacunas de Subunidades Proteicas
6.
Animals (Basel) ; 14(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39061555

RESUMEN

We aimed to estimate the non-phytate phosphorus (NPP) requirements of Chinese Jing Tint 6 layer chicks. We randomly allocated 720 birds to five treatments with six cages of 24 birds each, feeding them a corn-soybean diet containing 0.36%, 0.41%, 0.46%, 0.51%, and 0.56% NNP. The results showed that the body weight gain (BWG), tibial length, and apparent total tract digestibility coefficients (ATTDC) of P were affected (p < 0.05) by dietary NPP level. A quadratic broken-line analysis (p < 0.05) of BWG indicated that the optimal NPP for birds aged 1-14 d was 0.411%. Similarly, 0.409% of NPP met tibial growth needs. However, 0.394% of NPP was optimal for P utilization according to the ATTDC criterion. For 15-42 d birds, 0.466% NPP, as estimated by the BWG criterion, was sufficient for optimal growth without decreasing P utilization. Using the factorial method, NPP requirements were calculated as 0.367% and 0.439%, based on the maintenance factors and BWG for 1-14 and 15-42 d birds, respectively, to maintain normal growth. Combining the non-linear model with the factorial method, this study recommends dietary NPP levels of 0.367% and 0.439% for 1-14 and 15-42 d birds, respectively, to optimize P utilization without affecting performance.

7.
Nature ; 632(8025): 557-563, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39048828

RESUMEN

Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times1,2, contributing to widespread eutrophication and air pollution3-6. Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of -0.34 [-0.20, -0.50] W m-2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N2O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.

8.
J Environ Manage ; 365: 121591, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941856

RESUMEN

Understanding the relationships between ecosystem services (ES) and the factors driving their changes over long periods and multiple scales is key for landscape managers in decision-making. However, the widespread implementation of restoration programs has led to significant ES changes, with trade-offs across space and time that have been little explored empirically, making it challenging to provide effective experience for managers. We quantified changes and interactions among five ES across various stages of the Grain-to-Green Program in the eastern Loess Plateau, examining these dynamics at threefold spatial scales. We observed notable increases in soil retention and Net Ecosystem Production but declines in habitat quality and Landscape aesthetics under afforestation. Over time, and with more integrated restoration strategies, synergies between ES pairs weakened, and non-correlations (even trade-offs) increased. To avoid unnecessary trade-offs, we recommend incorporating socio-ecological factors driving ES changes and ES bundles, informed by empirical experience, into proactive spatial planning and environmental management strategies for multi-ES objectives. The temporal lags and spatial trade-offs highlighted by this study offer crucial insights for large-scale restoration programs worldwide.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ecología , Suelo , Restauración y Remediación Ambiental
9.
J Med Virol ; 96(6): e29711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847304

RESUMEN

The emerging evidence of human infections with emerging viruses suggests their potential public health importance. A novel taxon of viruses named Statoviruses (for stool-associated Tombus-like viruses) was recently identified in the gastrointestinal tracts of multiple mammals. Here we report the discovery of respiratory Statovirus-like viruses (provisionally named Restviruses) from the respiratory tracts of five patients experiencing acute respiratory disease with Human coronavirus OC43 infection through the retrospective analysis of meta-transcriptomic data. Restviruses shared 53.1%-98.8% identities of genomic sequences with each other and 39.9%-44.3% identities with Statoviruses. The phylogenetic analysis revealed that Restviruses together with a Stato-like virus from nasal-throat swabs of Vietnamese patients with acute respiratory disease, formed a well-supported clade distinct from the taxon of Statoviruses. However, the consistent genome characteristics of Restviruses and Statoviruses suggested that they might share similar evolutionary trajectories. These findings warrant further studies to elucidate the etiological and epidemiological significance of the emerging Restviruses.


Asunto(s)
Genoma Viral , Filogenia , Infecciones del Sistema Respiratorio , Humanos , China/epidemiología , Genoma Viral/genética , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología , Masculino , Femenino , Estudios Retrospectivos , Sistema Respiratorio/virología , Preescolar , Adulto , Niño , ARN Viral/genética , Persona de Mediana Edad
10.
Medicine (Baltimore) ; 103(23): e38472, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847736

RESUMEN

The dysregulation of protein-coding genes involved in various biological functions is closely associated with the progression of thyroid cancer. This study aimed to investigate the effects of dysregulated gene expressions on the prognosis of classical papillary thyroid carcinoma (cPTC). Using expression profiling datasets from the Cancer Genome Atlas (TCGA) database, we performed differential expression analysis to identify differentially expressed genes (DEGs). Cox regression and Kaplan-Meier analysis were used to identify DEGs, which were used to construct a risk model to predict the prognosis of cPTC patients. Functional enrichment analysis unveiled the potential significance of co-expressed protein-encoding genes in tumors. We identified 4 DEGs (SALL3, PPBP, MYH1, and SYNDIG1), which were used to construct a risk model to predict the prognosis of cPTC patients. These 4 genes were independent of clinical parameters and could be functional in cPTC carcinogenesis. Furthermore, PPBP exhibited a strong correlation with poorer overall survival (OS) in the advanced stage of the disease. This study suggests that the 4-gene signature could be an independent prognostic biomarker to improve prognosis prediction in cPTC patients older than 46.


Asunto(s)
Biomarcadores de Tumor , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/mortalidad , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Pronóstico , Femenino , Masculino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Estimación de Kaplan-Meier , Perfilación de la Expresión Génica/métodos , Medición de Riesgo/métodos , Regulación Neoplásica de la Expresión Génica , Cadenas Pesadas de Miosina/genética , Factores de Transcripción/genética , Modelos de Riesgos Proporcionales
11.
Nat Commun ; 15(1): 4922, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858434

RESUMEN

The bidirectional migration of halides and silver causes irreversible chemical corrosion to the electrodes and perovskite layer, affecting long-term operation stability of perovskite solar cells. Here we propose a silver coordination-induced n-doping of [6,6]-phenyl-C61-butyric acid methyl ester strategy to safeguard Ag electrode against corrosion and impede the migration of iodine within the PSCs. Meanwhile, the coordination between DCBP and silver induces n-doping in the PCBM layer, accelerating electron extraction from the perovskite layer. The resultant PSCs demonstrate an efficiency of 26.03% (certified 25.51%) with a minimal non-radiative voltage loss of 126 mV. The PCE of resulting devices retain 95% of their initial value after 2500 h of continuous maximum power point tracking under one-sun irradiation, and > 90% of their initial value even after 1500 h of accelerated aging at 85 °C and 85% relative humidity.

13.
J Alzheimers Dis Rep ; 8(1): 615-626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746631

RESUMEN

Background: Diabetes mellitus (DM) increases the risk for cognitive impairment and Alzheimer's disease (AD). Diabetic ketoacidosis (DKA), a serious complication of DM, may also cause brain damage and further AD, but the underlying molecular mechanisms remain unclear. Objective: Our objective was to understand how DKA can promote neurodegeneration in AD. Methods: We induced DKA in rats through intraperitoneal injection of streptozotocin, followed by starvation for 48 hours and investigated AD-related brain alterations focusing on tau phosphorylation. Results: We found that DKA induced hyperphosphorylation of tau protein at multiple sites associated with AD. Studies of tau kinases and phosphatases suggest that the DKA-induced hyperphosphorylation of tau was mainly mediated through activation of c-Jun N-terminal kinase and downregulation of protein phosphatase 2A. Disruption of the mTOR-AKT (the mechanistic target of rapamycin-protein kinase B) signaling pathway and increased levels of synaptic proteins were also observed in the brains of rats with DKA. Conclusions: These results shed some light on the mechanisms by which DKA may increase the risk for AD.

14.
Lancet Reg Health West Pac ; 45: 101050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38699290

RESUMEN

Background: Respiratory syncytial virus (RSV) has posed substantial morbidity and mortality burden to young children and older adults globally. The coronavirus disease 2019 (COVID-19) pandemic was reported to have altered RSV epidemiology and could have important implications for RSV prevention and control strategies. We aimed to compare RSV epidemiology in different phases of the COVID-19 pandemic with the pre-pandemic period by leveraging epidemiological, molecular, and serological data collected from a prospective respiratory pathogen surveillance and serology study. Methods: This study was based on the data during July 1, 2015 to November 30, 2023 from the Respiratory Pathogen Surveillance System (RPSS), a sentinel-hospital based surveillance system of acute respiratory infections consisting of 35 hospitals that represent residents of all ages from all 16 districts in Beijing, China. RSV infection status was tested by RT-PCR and gene sequencing and phylogenetic analysis was conducted among the identified RSV strains. We further supplemented RPSS data with three serology surveys conducted during 2017-2023 that tested RSV IgG levels from serum specimens. RSV detection rate was calculated by calendar month and compared across RSV seasons (defined as the July 1 through June 30 of the following year). RSV IgG positivity proportion was calculated by quarter of the year and was correlated with quarterly aggregated RSV detection rate for understanding the relationship between infection and immunity at the population level. Findings: Overall, a total of 52,931 respiratory specimens were collected and tested over the study period. RSV detection rates ranged from 1.24% (94/7594) in the 2017-2018 season to 2.80% (219/7824) in the 2018-2019 season, and from 1.06% (55/5165) in the 2022-2023 season to 2.98% (147/4938) in the 2021-2022 season during the pre-pandemic and pandemic period, respectively. ON1 and BA9 remained the predominant genotypes during the pandemic period; no novel RSV strains were identified. RSV circulation followed a winter-months seasonal pattern in most seasons. One exception was the 2020-2021 season when an extensive year-round circulation was observed, possibly associated with partial relaxation of non-pharmaceutical interventions (NPIs). The other exception was the 2022-2023 season when very low RSV activity was observed during the usual winter months (possibly due to the concurrent local COVID-19 epidemic), and followed by an out-of-season resurgence in the spring, with RSV detection persisting to the end of the study period (November 2023). During the two seasons above, we noted an age-group related asynchrony in the RSV detection rate; the RSV detection rate in young children remained similar (or even increased with borderline significance; 43/594, 7.24%, and 42/556, 7.55% vs 292/5293, 5.52%; P = 0.10 and P = 0.06, respectively) compared with the pre-pandemic seasons whereas the detection rate in older adults decreased significantly (8/1779, 0.45%, and 3/2021, 0.15% vs 160/10,348, 1.55%; P < 0.001 in two comparisons). Results from serology surveys showed significantly declined RSV IgG positivity in the 2022-2023 season compared to the pre-pandemic seasons (9.32%, 29/311 vs 20.16%, 100/496; P < 0.001); older adults had significantly higher RSV IgG positivity than young children in both pre-pandemic and pandemic periods (P values < 0.001). Interpretation: Our study documented the trajectory of RSV detection along with the changes in the stringency of NPIs, measured IgG positivity, and local COVID-19 epidemics. The findings suggest the interplay between contact patterns, immunity dynamics, and SARS-CoV-2 infection in shaping the RSV epidemics of population of different ages. These findings provide novel insights into the potential drivers of RSV circulating patterns and have important implications for RSV prevention and control strategies. Funding: The High-qualified Public Health Professionals Development Project, Capital's Funds for Health Improvement and Research, and the Public Health Personnel Training Support Program.

15.
Medicine (Baltimore) ; 103(17): e37934, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669432

RESUMEN

BACKGROUND: Parathyroid hormone-related peptide (PTHrP) is known to have a pivotal role in the progression of various solid tumors, among which prostate cancer stands out. However, the extent of PTHrP expression and its clinical implications in prostate cancer patients remain shrouded in obscurity. The primary objective of this research endeavor was to shed light on the relevance of PTHrP in the context of prostate cancer patients and to uncover the potential underlying mechanisms. METHODS: The expression of PTHrP, E-cadherin, and vimentin in tumor tissues of 88 prostate cancer patients was evaluated by immunohistochemical technique. Subsequently, the associations between PTHrP and clinicopathological parameters and prognosis of patients with prostate cancer were analyzed. RESULTS: Immunohistochemical analysis showed that the expression rates of PTHrP, E-cadherin, and vimentin in prostate cancer tissues were 95.5%, 88.6%, and 84.1%, respectively. Patients with a high level of PTHrP had a decreased expression of E-cadherin (P = .013) and an increased expression of vimentin (P = .010) compared with patients with a low level of PTHrP. Besides, the high expression of PTHrP was significantly correlated with a higher level of initial prostate-specific antigen (P = .026), positive lymph node metastasis (P = .010), osseous metastasis (P = .004), and Gleason score (P = .026). Moreover, patients with a high level of PTHrP had shorter progression-free survival (P = .002) than patients with a low level of PTHrP. CONCLUSION: The present study indicates that PTHrP is associated with risk factors of poor outcomes in prostate cancer, while epithelial-mesenchymal transition may be involved in this process.


Asunto(s)
Cadherinas , Proteína Relacionada con la Hormona Paratiroidea , Neoplasias de la Próstata , Vimentina , Humanos , Masculino , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/mortalidad , Pronóstico , Anciano , Vimentina/metabolismo , Cadherinas/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Inmunohistoquímica , Antígeno Prostático Específico/sangre , Metástasis Linfática
16.
Minerva Anestesiol ; 90(5): 439-451, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38619185

RESUMEN

INTRODUCTION: The medical application of music therapy (MT) has received widespread attention in recent years and some researchers have attempted to apply MT to the treatment of patients with anxiety and delirium in ICU. EVIDENCE ACQUISITION: Relevant randomized controlled trials (randomized controlled trials s) were searched in databases, such as Web of Science, PubMed, Embase, Cochrane Library, Medline, Scopus, and CINAHL. Researchers performed literature screening, data extraction, literature quality assessment, and heterogeneity analysis among RCTs. EVIDENCE SYNTHESIS: Fourteen studies met the inclusion criteria. In general, we included RCTs with low risk of bias, and the primary outcome indicators, including the Chinese version of the State-Trait Anxiety Inventory (C-STAI), Visual Analogue Scale for Anxiety Measurement (VAS-A), and Facial Anxiety Scale (FAS), with a recommended level of evidence of "strong". The pooled results indicated that MT was effective in alleviating the anxiety state of ICU patients (95% CI, SMD=-1.09 [-1.52, -0.67], P<0.05) and could reduce mental and physical fatigue in patients with anxious delirium in ICU (95% CI, WMD=-2.35 [-3.37, -1.33], P <0.05). There were significant differences in the therapeutic effects of MT with different intervention durations. Both 15-minute and 30-minute MT were effective in reducing anxiety levels in patients with anxiety disorders in the ICU (15min: 95%CI, SMD=-1.70[-2.15, -1.24], P<0.05; 30min: 95%CI, SMD=-0.73[-1.16, - 0.29], P<0.05). However, when the duration of MT exceeded 45 min, the overtreatment of MT instead interfered with patient rest and failed to produce a positive therapeutic effect (95% CI, SMD=-1.04 [-3.06, 0.97], P=0.31). In addition, a meta-analysis of physiological outcomes found that MT was effective in maintaining the stabilization of heart rate (HR), respiratory rate (RR), and systolic blood pressure (SBP) in ICU patients with anxiety (P<0.05), but did not affect patients' oxygen saturation, mean arterial pressure and diastolic blood pressure (P>0.05). No adverse events occurred during MT treatment in the reports of included 14 studies. CONCLUSIONS: MT can safely and effectively reduce the anxiety level of patients with anxiety and delirium in ICU and relieve their psychological and physical fatigue. And MT was able to maintain the stability of HR, RR, and SBP in ICU patients.


Asunto(s)
Ansiedad , Delirio , Unidades de Cuidados Intensivos , Musicoterapia , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Musicoterapia/métodos , Delirio/terapia , Ansiedad/terapia , Resultado del Tratamiento , Cuidados Críticos/métodos
17.
Nanoscale ; 16(18): 8960-8967, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38639878

RESUMEN

The exploration of powerful, efficient and precious metal-free electrocatalysts for facilitating the sluggish kinetics of the oxygen reduction reaction (ORR) is a crucial endeavor in the development and application of energy conversion and storage devices. Herein, we have rationally designed and synthesized bimetallic CoFe species consisting of CoFe nanoparticles and atomically dispersed dual atoms anchored on an ordered mesoporous carbon matrix (CoFe/NC) as highly efficient ORR electrocatalysts. The pyrolyzation temperature for CoFe/NC plays a vital role in regulating the morphology and composition of both the carbon matrix and CoFe species. The optimized CoFe/NC-750 exhibits a favorable ORR performance in 0.1 M KOH with a high half-wave potential (E1/2) of 0.87 V vs. RHE, excellent tolerance to methanol and remarkable durability (no obvious decrease in E1/2 value after 3000 cycles), all of which are superior to the performance of commercial Pt/C. Experimental measurements and density functional theory (DFT) calculations reveal that the improved ORR performance of CoFe/NC-750 is mainly attributed to the electronic structure of atomically dispersed Fe active sites modulated by the surrounding CoFe alloys and Co single atoms, which accelerates the dissociation and reduction of intermediate OH* species and promotes the ORR process.

18.
Opt Lett ; 49(5): 1261-1264, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426988

RESUMEN

A terahertz metamaterial waveguide (meta-waveguide) and a meta-waveguide-based lens-free imaging system are presented. The meta-waveguide not only inherits the low-loss transmission performance of a waveguide but also breaks through the diffraction limit under the action of the metamaterial, achieving subwavelength focusing. The focusing distance is far greater than the Rayleigh length, thus enabling far-field scanning imaging. For verification, a metal ring-based meta-waveguide was fabricated by 3D printing and metal cladding technology. Then, a transmission scanning imaging system working at 0.1 THz was built. High quality terahertz images with a resolution of 1/3 of the wavelength were obtained by placing the imaging targets at the focus and performing two-dimensional scanning. The focusing and transmission of terahertz wave in the meta-waveguide were simulated and analyzed.

19.
Chemosphere ; 353: 141635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447897

RESUMEN

The performance of bacterial strains in executing degradative functions under the coexistence of heavy metals/heavy metal-like elements and organic contaminants is understudied. In this study, we isolated a fluorene-degrading bacterium, highly arsenic-resistant, designated as strain 2021, from contaminated soil at the abandoned site of an old coking plant. It was identified as a member of the genus Rhodococcus sp. strain 2021 exhibited efficient fluorene-degrading ability under optimal conditions of 400 mg/L fluorene, 30 °C, pH 7.0, and 250 mg/L trivalent arsenic. It was noted that the addition of arsenic could promote the growth of strain 2021 and improve the degradation of fluorene - a phenomenon that has not been described yet. The results further indicated that strain 2021 can oxidize As3+ to As5+; here, approximately 13.1% of As3+ was converted to As5+ after aerobic cultivation for 8 days at 30 °C. The addition of arsenic could greatly up-regulate the expression of arsR/A/B/C/D and pcaG/H gene clusters involved in arsenic resistance and aromatic hydrocarbon degradation; it also aided in maintaining the continuously high expression of cstA that codes for carbon starvation protein and prmA/B that codes for monooxygenase. These results suggest that strain 2021 holds great potential for the bioremediation of environments contaminated by a combination of arsenic and polycyclic aromatic hydrocarbons. This study provides new insights into the interactions among microbes, as well as inorganic and organic pollutants.


Asunto(s)
Arsénico , Hidrocarburos Policíclicos Aromáticos , Rhodococcus , Contaminantes del Suelo , Arsénico/metabolismo , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Fluorenos/metabolismo , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
20.
Small ; 20(31): e2311823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456380

RESUMEN

Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior. Here, a multifunctional visual sensor based on the "host-guest photo-controlled permutation" strategy and the "lock and key" model is developed. The host-guest specific molecular recognition and electrochromic sensing platform is integrated at the micro-molecular scale, enabling multi-functional and multi-scene applications in the convenient and fast perception of UV radiation, military camouflage, and information erasure at the macro level of human-computer interaction through light-electrical co-controlled visual switching characteristics. This light-electrical co-controlled visual sensor based on an optoelectronic multi-mode sensing system is expected to provide new ideas and paradigms for healthcare, microelectronics manufacturing, and wearable electronic devices owing to its advantages of signal visualization, low energy consumption, low cost, and versatility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA