Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Vet Med Educ ; 50(1): 1-14, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35085060

RESUMEN

Cultural competence in professional and research practice is important to effectively deliver animal and One Health services and programs. Veterinarians work with culturally and linguistically diverse teams, clients, and communities. Cultural perspectives on the significance and perceptions of animals and differences in consultation and engagement protocols and strategies can influence client-practitioner and researcher-community relationships, impacting animal health, welfare, and/or research outcomes. Curricula have been proposed to build cultural capacity in graduates, but these have not been reported in veterinary programs, and early attempts to integrate cultural competency into the University of Sydney veterinary curriculum lacked a formal structure and were ad hoc with respect to implementation. To address this, the authors introduced a broad curriculum framework into the University of Sydney veterinary program, which defines cultural competence, perceptions of animals, effective communication, and community engagement in a range of contexts. Cultural competency learning outcomes were described for units of study. These were contextually relevant and aligned to course learning outcomes and University of Sydney graduate qualities. Constructive alignment was achieved by linking learning outcomes to teaching and learning activities and assessment. The continuum of cultural competency underpinned mapping of cultural competency across the curriculum with staged, vertical integration of key principles. Additionally, action to engage staff, students, and stakeholders in a cultural competence agenda assisted in sustaining curriculum change. The result was integration of cultural competency across the curriculum aligning with recommendations from accrediting bodies and with best practice models in medicine, nursing, and allied health programs.


Asunto(s)
Competencia Cultural , Educación en Veterinaria , Animales , Competencia Cultural/educación , Curriculum , Aprendizaje
2.
Commun Biol ; 5(1): 1127, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329312

RESUMEN

The evolutionarily unique platypus (Ornithorhynchus anatinus) has experienced major declines and extinctions from a range of historical and recent interacting human-mediated threats. Although spending most of their time in the water, platypuses can move over land. Nevertheless, uncertainties remain whether dams are barriers to movement, thus limiting gene flow and dispersal, essential to evolution and ecology. Here we examined disruption of gene flow between platypus groups below and above five major dams, matched to four adjacent rivers without major dams. Genetic differentiation (FST) across dams was 4- to 20-fold higher than along similar stretches of adjacent undammed rivers; FST across dams was similar to differentiation between adjacent river systems. This indicates that major dams represent major barriers for platypus movements. Furthermore, FST between groups was correlated with the year in which the dam was built, increasing by 0.011 every generation, reflecting the effects of these barriers on platypus genetics. This study provides evidence of gene flow restriction, which jeopardises the long-term viability of platypus populations when groups are fragmented by major dams. Mitigation strategies, such as building of by-pass structures and translocation between upstream and downstream of the dam, should be considered in conservation and management planning.


Asunto(s)
Ornitorrinco , Animales , Humanos , Ornitorrinco/genética , Ríos , Ecología , Movimiento
3.
R Soc Open Sci ; 9(3): 210558, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35308631

RESUMEN

The Arabian oryx was the first species to be rescued from extinction in the wild by the concerted efforts of captive programmes in zoos and private collections around the world. Reintroduction efforts have used two main sources: the 'World Herd', established at the Phoenix Zoo, and private collections in Saudi Arabia. The breeding programme at the Al-Wusta Wildlife Reserve (WWR) in Oman has played a central role in the rescue of the oryx. Individuals from the 'World Herd' and the United Arab Emirates have been the main source for the WWR programme. However, no breeding strategies accounting for genetic diversity have been implemented. To address this, we investigated the diversity of the WWR population and historical samples using mitochondrial DNA (mtDNA) and single nucleotide polymorphisms (SNPs). We found individuals at WWR contain 58% of the total mtDNA diversity observed globally. Inference of ancestry and spatial patterns of SNP variation shows the presence of three ancestral sources and three different groups of individuals. Similar levels of diversity and low inbreeding were observed between groups. We identified individuals and groups that could most effectively contribute to maximizing genetic diversity. Our results will be valuable to guide breeding and reintroduction programmes at WWR.

4.
Sci Rep ; 10(1): 20629, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244111

RESUMEN

The island of Madagascar, situated off the southeast coast of Africa, shows the first evidence of human presence ~ 10,000 years ago; however, other archaeological data indicates a settlement of the modern peoples of the island distinctly more recent, perhaps > 1500 years ago. Bushpigs of the genus Potamochoerus (family Suidae), are today widely distributed in Madagascar and presumed to have been introduced from Africa at some stage by human immigrants to the island. However, disparities about their origins in Madagascar have been presented in the literature, including the possibility of endemic subspecies, and few empirical data are available. Furthermore, the separation of bushpigs in Madagascar from their mainland relatives may have favoured the evolution of a different repertoire of immune genes first due to a founder effect and then as a response to distinct pathogens compared to their ancestors. Molecular analysis confirmed the species status of the bushpig in Madagascar as P. larvatus, likely introduced from the central region of southern Africa, with no genetic evidence for the recognition of eastern and western subspecies as suggested from previous cranial morphology examination. Investigation of the immunologically important SLA-DQB1 peptide-binding region showed a different immune repertoire of bushpigs in Madagascar compared to those on the African mainland, with seventeen exon-2 haplotypes unique to bushpigs in Madagascar (2/28 haplotypes shared). This suggests that the MHC diversity of the Madagascar populations may have enabled Malagasy bushpigs to adapt to new environments.


Asunto(s)
Porcinos/genética , África Austral , Animales , Variación Genética/genética , Haplotipos , Humanos , Madagascar , Filogenia
5.
Anal Biochem ; 602: 113781, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32485163

RESUMEN

MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.


Asunto(s)
Elementos Transponibles de ADN/genética , MicroARNs/genética , Caimanes y Cocodrilos , Animales , Biblioteca de Genes , Salinidad
6.
R Soc Open Sci ; 7(2): 191558, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257320

RESUMEN

Chickens (Gallus gallus domesticus) from the Americas have long been recognized as descendants of European chickens, transported by early Europeans since the fifteenth century. However, in recent years, a possible pre-Columbian introduction of chickens to South America by Polynesian seafarers has also been suggested. Here, we characterize the mitochondrial control region genetic diversity of modern chicken populations from South America and compare this to a worldwide dataset in order to investigate the potential maternal genetic origin of modern-day chicken populations in South America. The genetic analysis of newly generated chicken mitochondrial control region sequences from South America showed that the majority of chickens from the continent belong to mitochondrial haplogroup E. The rest belongs to haplogroups A, B and C, albeit at very low levels. Haplogroup D, a ubiquitous mitochondrial lineage in Island Southeast Asia and on Pacific Islands is not observed in continental South America. Modern-day mainland South American chickens are, therefore, closely allied with European and Asian chickens. Furthermore, we find high levels of genetic contributions from South Asian chickens to those in Europe and South America. Our findings demonstrate that modern-day genetic diversity of mainland South American chickens appear to have clear European and Asian contributions, and less so from Island Southeast Asia and the Pacific Islands. Furthermore, there is also some indication that South Asia has more genetic contribution to European chickens than any other Asian chicken populations.

7.
Genome Biol Evol ; 12(1): 3635-3646, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31821505

RESUMEN

Crocodilians are an economically, culturally, and biologically important group. To improve researchers' ability to study genome structure, evolution, and gene regulation in the clade, we generated a high-quality de novo genome assembly of the saltwater crocodile, Crocodylus porosus, from Illumina short read data from genomic libraries and in vitro proximity-ligation libraries. The assembled genome is 2,123.5 Mb, with N50 scaffold size of 17.7 Mb and N90 scaffold size of 3.8 Mb. We then annotated this new assembly, increasing the number of annotated genes by 74%. In total, 96% of 23,242 annotated genes were associated with a functional protein domain. Furthermore, multiple noncoding functional regions and mappable genetic markers were identified. Upon analysis and overlapping the results of branch length estimation and site selection tests for detecting potential selection, we found 16 putative genes under positive selection in crocodilians, 10 in C. porosus and 6 in Alligator mississippiensis. The annotated C. porosus genome will serve as an important platform for osmoregulatory, physiological, and sex determination studies, as well as an important reference in investigating the phylogenetic relationships of crocodilians, birds, and other tetrapods.


Asunto(s)
Caimanes y Cocodrilos/genética , Genoma , Animales , Redes Reguladoras de Genes , Genes , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , ARN de Transferencia/genética , Selección Genética
8.
J Mammal ; 100(2): 308-327, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31043761

RESUMEN

The platypus (Ornithorhynchus anatinus) is one of the world's most evolutionarily distinct mammals, one of five extant species of egg-laying mammals, and the only living species within the family Ornithorhynchidae. Modern platypuses are endemic to eastern mainland Australia, Tasmania, and adjacent King Island, with a small introduced population on Kangaroo Island, South Australia, and are widely distributed in permanent river systems from tropical to alpine environments. Accumulating knowledge and technological advancements have provided insights into many aspects of its evolutionary history and biology but have also raised concern about significant knowledge gaps surrounding distribution, population sizes, and trends. The platypus' distribution coincides with many of Australia's major threatening processes, including highly regulated and disrupted rivers, intensive habitat destruction, and fragmentation, and they were extensively hunted for their fur until the early 20th century. Emerging evidence of local population declines and extinctions identifies that ecological thresholds have been crossed in some populations and, if threats are not addressed, the species will continue to decline. In 2016, the IUCN Red Listing for the platypus was elevated to "Near Threatened," but the platypus remains unlisted on threatened species schedules of any Australian state, apart from South Australia, or nationally. In this synthesis, we review the evolutionary history, genetics, biology, and ecology of this extraordinary mammal and highlight prevailing threats. We also outline future research directions and challenges that need to be met to help conserve the species.

9.
One Health ; 5: 57-64, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29911166

RESUMEN

BACKGROUND: New educational approaches are needed to improve student understanding of the wider sociological and ecological determinants of health as well as professional responsibilities in related areas. Field trips allow students to observe interaction between plant, animal and human communities, making them an ideal tool for teaching One Health concepts. METHODS: Veterinary medical students participated in a field trip to a local parklands area, frequented by humans, dogs, horses, and wildlife. Students rotated through 5 learning activities ('stations') that focused on: (1) response to exotic animal disease incursion (equine influenza); (2) impact of cultures and belief systems on professional practice; (3) management of dangerous dogs; (4) land use change, biodiversity and emerging infectious disease; and (5) management of environmentally-acquired zoonoses (botulism). Intended learning outcomes were for students to: evaluate the various roles and responsibilities of veterinarians in society; compare the benefits and risks associated with human-animal and animal-animal interactions; and evaluate the contributions made by various professionals in safeguarding the health and welfare of animals, humans and the environment. Following the field trip, students participated in a debrief exercise and completed an online survey on their experiences. RESULTS: Feedback from students collected in 2016/2017 (n = 211) was overwhelmingly positive. The learning experience at each station was rated as 4 ('Good') or 5 ('Very Good') out of 5 by 82-96% of students. Responses to closed- and open-ended questions - as well as outputs generated in the debrief session - indicated that students achieved the learning outcomes. Overall, 94% of students agreed or strongly agreed that they had a better understanding of One Health because of the field trip. CONCLUSIONS: Field trips to local parklands are effective in promoting learning about One Health and can be incorporated into the core curriculum to maximize student exposure at relatively low cost.

10.
Mol Biol Evol ; 35(5): 1238-1252, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688544

RESUMEN

The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.


Asunto(s)
Distribución Animal , Ornitorrinco/genética , Animales , Australia , Femenino , Variación Genética , Endogamia , Masculino , Tasa de Mutación , Dinámica Poblacional , Secuenciación Completa del Genoma
11.
Immunogenetics ; 70(6): 401-417, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29256177

RESUMEN

The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.


Asunto(s)
Artiodáctilos/genética , Complejo Mayor de Histocompatibilidad/genética , Porcinos/genética , Animales , Secuencia de Bases , Evolución Biológica , Hibridación Genómica Comparativa/métodos , Evolución Molecular , Genes MHC Clase I , Genoma , Filogenia , Análisis de Secuencia de ADN/métodos
12.
Mol Phylogenet Evol ; 112: 258-267, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28363818

RESUMEN

The geographical range of extant peccaries extends from the southwestern United States through Central America and into northern Argentina. However, from the Miocene until the Pleistocene now-extinct peccary species inhabited the entirety of North America. Relationships among the living and extinct species have long been contentious. Similarly, how and when peccaries moved from North to South America is unclear. The North American flat-headed peccary (Platygonus compressus) became extinct at the end of the Pleistocene and is one of the most abundant subfossil taxa found in North America, yet despite this extensive fossil record its phylogenetic position has not been resolved. This study is the first to present DNA data from the flat-headed peccary and full mitochondrial genome sequences of all the extant peccary species. We performed a molecular phylogenetic analysis to determine the relationships among ancient and extant peccary species. Our results suggested that the flat-headed peccary is sister-taxon to a clade comprising the extant peccary species. Divergence date estimates from our molecular dating analyses suggest that if extant peccary diversification occurred in South America then their common ancestor must have dispersed from North America to South America well before the establishment of the Isthmus of Panama. We also investigated the genetic diversity of the flat-headed peccary by performing a preliminary population study on specimens from Sheriden Cave, Ohio. Flat-headed peccaries from Sheriden Cave appear to be genetically diverse and show no signature of population decline prior to extinction. Including additional extinct Pleistocene peccary species in future phylogenetic analyses will further clarify peccary evolution.


Asunto(s)
Artiodáctilos/genética , ADN Antiguo/análisis , Extinción Biológica , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Evolución Molecular , Fósiles , Variación Genética , Genoma Mitocondrial , Geografía , Haplotipos/genética , América del Norte , Filogenia
13.
R Soc Open Sci ; 4(3): 160787, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28405364

RESUMEN

The colonization of Madagascar by Austronesian-speaking people during AD 50-500 represents the most westerly point of the greatest diaspora in prehistory. A range of economically important plants and animals may have accompanied the Austronesians. Domestic chickens (Gallus gallus) are found in Madagascar, but it is unclear how they arrived there. Did they accompany the initial Austronesian-speaking populations that reached Madagascar via the Indian Ocean or were they late arrivals with Arabian and African sea-farers? To address this question, we investigated the mitochondrial DNA control region diversity of modern chickens sampled from around the Indian Ocean rim (Southeast Asia, South Asia, the Arabian Peninsula, East Africa and Madagascar). In contrast to the linguistic and human genetic evidence indicating dual African and Southeast Asian ancestry of the Malagasy people, we find that chickens in Madagascar only share a common ancestor with East Africa, which together are genetically closer to South Asian chickens than to those in Southeast Asia. This suggests that the earliest expansion of Austronesian-speaking people across the Indian Ocean did not successfully introduce chickens to Madagascar. Our results further demonstrate the complexity of the translocation history of introduced domesticates in Madagascar.

14.
Annu Rev Anim Biosci ; 4: 61-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26526544

RESUMEN

The Suidae are a family of Cetartiodactyla composed of 17 species classified in a minimum of five extant genera that originated at least 20 million years ago. Their success is evident in the multitude of habitats in which they are found as both natural and feral populations in tropical Island Southeast Asia, the high plateau of the Himalayas, Siberia, North Africa, the Pacific Islands, Australia, and the Americas. Morphological and molecular analyses of these species have revealed numerous aspects of their biology, including the ease with which many lineages have and continue to hybridize. This trait has made them an ideal model for evolutionary biologists. Suid species have also shared a deep history with humans, from their association with early hominids in Africa to their domestication. Here we review the current knowledge of this fascinating group and provide a comprehensive evolutionary history from the Oligocene to the present day.


Asunto(s)
Porcinos/genética , África del Norte , Animales , Asia Sudoriental , Australia , Evolución Biológica , Fósiles , Hibridación Genética , Islas del Pacífico , Siberia , Porcinos/anatomía & histología , Porcinos/fisiología
15.
J Hered ; 106(4): 395-402, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25908666

RESUMEN

Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species.


Asunto(s)
Genes MHC Clase II , Variación Genética , Leones Marinos/genética , Alelos , Secuencia de Aminoácidos , Animales , Australia , Especies en Peligro de Extinción , Exones , Cadenas beta de HLA-DQ/genética , Cadenas beta de HLA-DR/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
16.
Retrovirology ; 12: 26, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25808580

RESUMEN

BACKGROUND: Endogenous retroviruses (ERVs) are genetic elements with a retroviral origin that are integrated into vertebrate genomes. In felids (Mammalia, Carnivora, Felidae), ERVs have been described mostly in the domestic cat, and only rarely in wild species. To gain insight into the origins and evolutionary dynamics of endogenous retroviruses in felids, we have identified and characterized partial pro/pol ERV sequences from eight Neotropical wild cat species, belonging to three distinct lineages of Felidae. We also compared them with publicly available genomic sequences of Felis catus and Panthera tigris, as well as with representatives of other vertebrate groups, and performed phylogenetic and molecular dating analyses to investigate the pattern and timing of diversification of these retroviral elements. RESULTS: We identified a high diversity of ERVs in the sampled felids, with a predominance of Gammaretrovirus-related sequences, including class I ERVs. Our data indicate that the identified ERVs arose from at least eleven horizontal interordinal transmissions from other mammals. Furthermore, we estimated that the majority of the Gamma-like integrations took place during the diversification of modern felids. Finally, our phylogenetic analyses indicate the presence of a genetically divergent group of sequences whose position in our phylogenetic tree was difficult to establish confidently relative to known retroviruses, and another lineage identified as ERVs belonging to class II. CONCLUSIONS: Retroviruses have circulated in felids along with their evolution. The majority of the deep clades of ERVs exist since the primary divergence of felids' base and cluster with retroviruses of divergent mammalian lineages, suggesting horizontal interordinal transmission. Our findings highlight the importance of additional studies on the role of ERVs in the genome landscaping of other carnivore species.


Asunto(s)
Retrovirus Endógenos/clasificación , Retrovirus Endógenos/aislamiento & purificación , Felidae/virología , Variación Genética , Infecciones por Retroviridae/veterinaria , Animales , Animales Salvajes , Análisis por Conglomerados , Retrovirus Endógenos/genética , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Infecciones por Retroviridae/virología , Análisis de Secuencia de ADN , Homología de Secuencia
17.
Virus Genes ; 50(2): 329-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653017

RESUMEN

Endogenous retroviruses (ERVs) are one of many families of transposable elements present in vertebrate genomes. We have examined the ERV complement of the freshwater crocodile (Crocodylus johnstoni) in order to investigate the diversity of ERVs present and possibility of ERV or retroviral activity in a diseased individual of this species. Amplification and sequencing of the highly conserved retroviral pro-pol domains revealed high levels of sequence variation in these ERVs. Phylogenetic analyses of these ERVs and those previously identified in other crocodilian species suggest that although many crocodilians share the same ERV lineages, the relative numbers of retroelement insertions from each of these lineages may vary greatly between species. The data generated in this study provide evidence for the presence of a unique and varied complement of ERVs in crocodilians. This study has also demonstrated the presence of species-specific evolution in ancient retroviral infections.


Asunto(s)
Caimanes y Cocodrilos/virología , Retrovirus Endógenos/genética , Retrovirus Endógenos/aislamiento & purificación , Variación Genética , Infecciones por Retroviridae/veterinaria , Animales , Retrovirus Endógenos/clasificación , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Infecciones por Retroviridae/virología
18.
PLoS One ; 9(12): e114631, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25503521

RESUMEN

The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.


Asunto(s)
Caimanes y Cocodrilos/genética , Genes MHC Clase II/genética , Genes MHC Clase I/genética , Genómica , Caimanes y Cocodrilos/virología , Animales , Cromosomas Artificiales Bacterianos/genética , Mapeo Contig , Retroelementos/genética , Retroviridae/genética , Especificidad de la Especie
19.
Science ; 346(6215): 1254449, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25504731

RESUMEN

To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.


Asunto(s)
Caimanes y Cocodrilos/genética , Aves/genética , Dinosaurios/genética , Evolución Molecular , Genoma , Caimanes y Cocodrilos/clasificación , Animales , Evolución Biológica , Aves/clasificación , Secuencia Conservada , Elementos Transponibles de ADN , Dinosaurios/clasificación , Variación Genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Reptiles/clasificación , Reptiles/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Transcriptoma
20.
Retrovirology ; 11: 71, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25499090

RESUMEN

BACKGROUND: Crocodilians are thought to be hosts to a diverse and divergent complement of endogenous retroviruses (ERVs) but a comprehensive investigation is yet to be performed. The recent sequencing of three crocodilian genomes provides an opportunity for a more detailed and accurate representation of the ERV diversity that is present in these species. Here we investigate the diversity, distribution and evolution of ERVs from the genomes of three key crocodilian species, and outline the key processes driving crocodilian ERV proliferation and evolution. RESULTS: ERVs and ERV related sequences make up less than 2% of crocodilian genomes. We recovered and described 45 ERV groups within the three crocodilian genomes, many of which are species specific. We have also revealed a new class of ERV, ERV4, which appears to be common to crocodilians and turtles, and currently has no characterised exogenous counterpart. For the first time, we formally describe the characteristics of this ERV class and its classification relative to other recognised ERV and retroviral classes. This class shares some sequence similarity and sequence characteristics with ERV3, although it is phylogenetically distinct from the other ERV classes. We have also identified two instances of gene capture by crocodilian ERVs, one of which, the capture of a host KIT-ligand mRNA has occurred without the loss of an ERV domain. CONCLUSIONS: This study indicates that crocodilian ERVs comprise a wide variety of lineages, many of which appear to reflect ancient infections. In particular, ERV4 appears to have a limited host range, with current data suggesting that it is confined to crocodilians and some lineages of turtles. Also of interest are two ERV groups that demonstrate evidence of host gene capture. This study provides a framework to facilitate further studies into non-mammalian vertebrates and highlights the need for further studies into such species.


Asunto(s)
Caimanes y Cocodrilos/genética , Caimanes y Cocodrilos/virología , Retrovirus Endógenos/clasificación , Retrovirus Endógenos/genética , Evolución Molecular , Variación Genética , Genoma , Animales , Análisis por Conglomerados , Biología Computacional , Filogenia , Recombinación Genética , Homología de Secuencia , Tortugas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...