Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 51(9): 1308-1314, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406347

RESUMEN

Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options1. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families2. We perform whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Heterozygous rabl3 mutant zebrafish show increased susceptibility to cancer formation. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases3. Indeed, the truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. Our studies identify RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Carcinoma/patología , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Pancreáticas/patología , Prenilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas de Unión al GTP rab/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Proteínas Proto-Oncogénicas p21(ras)/genética , Homología de Secuencia , Pez Cebra
3.
J Biol Chem ; 291(12): 6534-45, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26814130

RESUMEN

The small GTPase DiRas1 has tumor-suppressive activities, unlike the oncogenic properties more common to small GTPases such as K-Ras and RhoA. Although DiRas1 has been found to be a tumor suppressor in gliomas and esophageal squamous cell carcinomas, the mechanisms by which it inhibits malignant phenotypes have not been fully determined. In this study, we demonstrate that DiRas1 binds to SmgGDS, a protein that promotes the activation of several oncogenic GTPases. In silico docking studies predict that DiRas1 binds to SmgGDS in a manner similar to other small GTPases. SmgGDS is a guanine nucleotide exchange factor for RhoA, but we report here that SmgGDS does not mediate GDP/GTP exchange on DiRas1. Intriguingly, DiRas1 acts similarly to a dominant-negative small GTPase, binding to SmgGDS and inhibiting SmgGDS binding to other small GTPases, including K-Ras4B, RhoA, and Rap1A. DiRas1 is expressed in normal breast tissue, but its expression is decreased in most breast cancers, similar to its family member DiRas3 (ARHI). DiRas1 inhibits RhoA- and SmgGDS-mediated NF-κB transcriptional activity in HEK293T cells. We also report that DiRas1 suppresses basal NF-κB activation in breast cancer and glioblastoma cell lines. Taken together, our data support a model in which DiRas1 expression inhibits malignant features of cancers in part by nonproductively binding to SmgGDS and inhibiting the binding of other small GTPases to SmgGDS.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/enzimología , Carcinoma Ductal de Mama/enzimología , GTP Fosfohidrolasas/química , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Células HEK293 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Supresoras de Tumor/química , Proteína de Unión al GTP rhoA
4.
PLoS One ; 9(6): e99139, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901711

RESUMEN

The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the µ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining µ subunits in the cells are eventually able to reroute class I molecules to lysosomes.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Complejo 3 de Proteína Adaptadora/metabolismo , Proteínas Portadoras/metabolismo , Herpesvirus Humano 7/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Lisosomas/metabolismo , Proteínas Virales/metabolismo , Complejo 1 de Proteína Adaptadora/antagonistas & inhibidores , Complejo 1 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/antagonistas & inhibidores , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Complejo 3 de Proteína Adaptadora/antagonistas & inhibidores , Complejo 3 de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Línea Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Muromegalovirus/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas del Envoltorio Viral/metabolismo
5.
Sci Signal ; 6(277): ra39, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23716716

RESUMEN

During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.


Asunto(s)
Adenosina/metabolismo , Movimiento Celular/fisiología , Modelos Biológicos , Metástasis de la Neoplasia/fisiopatología , Transducción de Señal/fisiología , Microambiente Tumoral , Proteínas de Unión al GTP rap/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Confocal , Datos de Secuencia Molecular , Prenilación , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2B/metabolismo , Proteínas de Unión al GTP rap/genética
6.
J Immunol ; 189(1): 464-74, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22649199

RESUMEN

Regulatory T cells (Tregs), in particular CD4(+) Foxp3(+) T cells, have been shown to play an important role in the maintenance of tolerance after allogeneic stem cell transplantation. In the current study, we have identified a population of CD8(+) Foxp3(+) T cells that are induced early during graft-versus-host disease (GVHD), constitute a significant percentage of the entire Treg population, and are present in all major GVHD target organs. These cells expressed many of the same cell surface molecules as found on CD4(+) Tregs and potently suppressed in vitro alloreactive T cell responses. Induction of these cells correlated positively with the degree of MHC disparity between donor and recipient and was significantly greater than that observed for CD4(+)-induced Tregs (iTregs) in nearly all tissue sites. Mice that lacked the ability to make both CD8(+) and CD4(+) iTregs had accelerated GVHD mortality compared with animals that were competent to make both iTreg populations. The absence of both iTreg populations was associated with significantly greater expansion of activated donor T cells and increased numbers of CD4(+) and CD8(+) T cells that secreted IFN-γ and IL-17. The presence of CD8(+) iTregs, however, was sufficient to prevent increased GVHD mortality in the complete absence of CD4(+) Tregs, indicating at least one functional iTreg population was sufficient to prevent an exacerbation in GVHD severity, and that CD8(+) iTregs could compensate for CD4(+) iTregs. These studies define a novel population of CD8(+) Tregs that play a role in mitigating the severity of GVHD after allogeneic stem cell transplantation.


Asunto(s)
Antígenos CD8/biosíntesis , Diferenciación Celular/inmunología , Factores de Transcripción Forkhead/biosíntesis , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/terapia , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Trasplante de Médula Ósea/inmunología , Trasplante de Médula Ósea/patología , Diferenciación Celular/genética , Enfermedad Injerto contra Huésped/patología , Tolerancia Inmunológica/genética , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/patología , Linfocitos T Reguladores/patología
7.
J Biol Chem ; 285(47): 37016-29, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-20833720

RESUMEN

The U21 open reading frame from human herpesvirus-7 encodes a membrane protein that associates with and redirects class I MHC molecules to the lysosomal compartment. The mechanism by which U21 accomplishes this trafficking excursion is unknown. Here we have examined the contribution of localization, glycosylation, domain structure, and the absence of substrate class I MHC molecules on the ability of U21 to traffic to lysosomes. Our results suggest the existence of a cellular protein necessary for U21-mediated rerouting of class I MHC molecules.


Asunto(s)
Proteínas Portadoras/metabolismo , Glioblastoma/metabolismo , Antígeno HLA-A2/metabolismo , Herpesvirus Humano 7/metabolismo , Lisosomas/metabolismo , Proteínas Virales/metabolismo , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Diferenciación Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glicosilación , Antígeno HLA-A2/genética , Humanos , Inmunoprecipitación , Fragmentos de Péptidos/metabolismo , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Microglobulina beta-2/antagonistas & inhibidores , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...