Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Eur J Heart Fail ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980205

RESUMEN

AIMS: Fibrosis is a common feature of many chronic diseases, including heart failure, which can have deleterious effects on cardiac structure and function that are associated with adverse outcomes. By-products of collagen synthesis and degradation, such as carboxy- and amino-terminal pro- or telo-peptides of collagen type I and III (PICP, PINP, PIIINP, and CITP) have been extensively investigated as markers of fibrosis. Although the majority of studies report on the reproducibility of their assay results, there is no a comparison of biomarker assays across studies. Therefore, we conducted a systematic review adhering to PRISMA guidelines. METHODS AND RESULTS: The search terms employed in Medline were: 'collagen AND cardiac' or 'collagen AND heart'. This query yielded a total of 1049 articles. Thereafter, specific search criteria were applied: (i) original English-language papers; (ii) human studies; (iii) in-vivo investigations; and (iv) blood/serum/plasma samples. Overall, 89 studies were identified (42 on PIIINP, 32 on PICP, 29 on CITP, and 17 on PINP). The range of reported values for PIIINP was between 0.06 to 11 800 µg/l; for PICP 0.006 to 1265 µg/l; for CITP 0.3 to 5450 µg/l; for PINP 0.15 to 80 µg/l. Extreme variations in values for fibrosis biomarkers were observed across studies, especially when different assays were used, but also with the same assays. CONCLUSIONS: Our findings show that it is challenging to ascertain normal ranges or compare studies for the measurement of fibrosis biomarkers. Given the potential implications for clinical practice and current lack of awareness of these issues, this subject warrants comprehensive acknowledgement and understanding.

2.
Matrix Biol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38871093

RESUMEN

Fibrosis, driven by fibroblast activities, is an important contributor to morbidity and mortality in most chronic diseases. Endotrophin, a signaling molecule derived from processing of type VI collagen by highly activated fibroblasts, is involved in fibrotic tissue remodeling. Circulating levels of endotrophin have been associated with an increased risk of mortality in multiple chronic diseases. We conducted a systematic literature review collecting evidence from original papers published between 2012 and January 2023 that reported associations between circulating endotrophin (PRO-C6) and mortality. Cohorts with data available to the study authors were included in an Individual Patient Data (IPD) meta-analysis that evaluated the association of PRO-C6 with mortality (PROSPERO registration number: CRD42023340215) after adjustment for age, sex and BMI, where available. In the IPD meta-analysis including sixteen cohorts of patients with different non-communicable chronic diseases (NCCDs) (N=15,205) the estimated summary hazard ratio for 3-years all-cause mortality was 2.10 (95% CI 1.75-2.52) for a 2-fold increase in PRO-C6, with some heterogeneity observed between the studies (I2=70%). This meta-analysis is the first study documenting that fibroblast activities, as quantified by circulating endotrophin, are independently associated with mortality across a broad range of NCCDs. This indicates that, irrespective of disease, interstitial tissue remodeling, and consequently fibroblast activities, has a central role in adverse clinical outcomes, and should be considered with urgency from drug developers as a target to treat.

3.
Heart ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729636

RESUMEN

OBJECTIVE: Heart failure (HF) is characterised by collagen deposition. Urinary proteomic profiling (UPP) followed by peptide sequencing identifies parental proteins, for over 70% derived from collagens. This study aimed to refine understanding of the antifibrotic action of spironolactone. METHODS: In this substudy (n=290) to the Heart 'Omics' in Ageing Study trial, patients were randomised to usual therapy combined or not with spironolactone 25-50 mg/day and followed for 9 months. The analysis included 1498 sequenced urinary peptides detectable in ≥30% of patients and carboxyterminal propeptide of procollagen I (PICP) and PICP/carboxyterminal telopeptide of collagen I (CITP) as serum biomarkers of COL1A1 synthesis. After rank normalisation of biomarker distributions, between-group differences in their changes were assessed by multivariable-adjusted mixed model analysis of variance. Correlations between the changes in urinary peptides and in serum PICP and PICP/CITP were compared between groups using Fisher's Z transform. RESULTS: Multivariable-adjusted between-group differences in the urinary peptides with error 1 rate correction were limited to 27 collagen fragments, of which 16 were upregulated (7 COL1A1 fragments) on spironolactone and 11 downregulated (4 COL1A1 fragments). Over 9 months of follow-up, spironolactone decreased serum PICP from 81 (IQR 66-95) to 75 (61-90) µg/L and PICP/CITP from 22 (17-28) to 18 (13-26), whereas no changes occurred in the control group, resulting in a difference (spironolactone minus control) expressed in standardised units of -0.321 (95% CI 0.0007). Spironolactone did not affect the correlations between changes in urinary COL1A1 fragments and in PICP or the PICP/CITP ratio. CONCLUSIONS: Spironolactone decreased serum markers of collagen synthesis and predominantly downregulated urinary collagen-derived peptides, but upregulated others. The interpretation of these opposite UPP trends might be due to shrinking the body-wide pool of collagens, explaining downregulation, while some degree of collagen synthesis must be maintained to sustain vital organ functions, explaining upregulation. Combining urinary and serum fibrosis markers opens new avenues for the understanding of the action of antifibrotic drugs. TRIAL REGISTRATION NUMBER: NCT02556450.

4.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673963

RESUMEN

Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.


Asunto(s)
Biomarcadores , Vesículas Extracelulares , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Accidente Cerebrovascular Isquémico , Trombosis , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Biomarcadores/sangre , Masculino , Femenino , Anciano , Trombosis/metabolismo , Trombosis/etiología , Trombosis/sangre , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Persona de Mediana Edad , Perfilación de la Expresión Génica , Transcriptoma , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/complicaciones , Fibrilación Atrial/sangre
5.
Eur J Heart Fail ; 26(5): 1231-1241, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528728

RESUMEN

AIMS: High left ventricular filling pressure increases left atrial volume and causes myocardial fibrosis, which may decrease with spironolactone. We studied clinical and proteomic characteristics associated with left atrial volume indexed by body surface area (LAVi), and whether LAVi influences the response to spironolactone on biomarker expression and clinical variables. METHODS AND RESULTS: In the HOMAGE trial, where people at risk of heart failure were randomized to spironolactone or control, we analysed 421 participants with available LAVi and 276 proteomic measurements (Olink) at baseline, month 1 and 9 (mean age 73 ± 6 years; women 26%; LAVi 32 ± 9 ml/m2). Circulating proteins associated with LAVi were also assessed in asymptomatic individuals from a population-based cohort (STANISLAS; n = 1640; mean age 49 ± 14 years; women 51%; LAVi 23 ± 7 ml/m2). In both studies, greater LAVi was significantly associated with greater left ventricular masses and volumes. In HOMAGE, after adjustment and correction for multiple testing, greater LAVi was associated with higher concentrations of matrix metallopeptidase-2 (MMP-2), insulin-like growth factor binding protein-2 (IGFBP-2) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (false discovery rates [FDR] <0.05). These associations were externally replicated in STANISLAS (all FDR <0.05). Among these biomarkers, spironolactone decreased concentrations of MMP-2 and NT-proBNP, regardless of baseline LAVi (pinteraction > 0.10). Spironolactone also significantly reduced LAVi, improved left ventricular ejection fraction, lowered E/e', blood pressure and serum procollagen type I C-terminal propeptide (PICP) concentration, a collagen synthesis marker, regardless of baseline LAVi (pinteraction > 0.10). CONCLUSION: In individuals without heart failure, LAVi was associated with MMP-2, IGFBP-2 and NT-proBNP. Spironolactone reduced these biomarker concentrations as well as LAVi and PICP, irrespective of left atrial size.


Asunto(s)
Atrios Cardíacos , Insuficiencia Cardíaca , Antagonistas de Receptores de Mineralocorticoides , Proteómica , Espironolactona , Humanos , Espironolactona/uso terapéutico , Femenino , Masculino , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Anciano , Proteómica/métodos , Persona de Mediana Edad , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Biomarcadores/sangre , Péptido Natriurético Encefálico/sangre , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 2 de la Matriz/metabolismo , Fragmentos de Péptidos/sangre , Volumen Sistólico/fisiología
6.
Eur J Heart Fail ; 26(2): 483-501, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38269474

RESUMEN

Implantable devices form an integral part of the management of patients with heart failure (HF) and provide adjunctive therapies in addition to cornerstone drug treatment. Although the number of these devices is growing, only few are supported by robust evidence. Current devices aim to improve haemodynamics, improve reverse remodelling, or provide electrical therapy. A number of these devices have guideline recommendations and some have been shown to improve outcomes such as cardiac resynchronization therapy, implantable cardioverter-defibrillators and long-term mechanical support. For others, more evidence is still needed before large-scale implementation can be strongly advised. Of note, devices and drugs can work synergistically in HF as improved disease control with devices can allow for further optimization of drug therapy. Therefore, some devices might already be considered early in the disease trajectory of HF patients, while others might only be reserved for advanced HF. As such, device therapy should be integrated into HF care programmes. Unfortunately, implementation of devices, including those with the greatest evidence, in clinical care pathways is still suboptimal. This clinical consensus document of the Heart Failure Association (HFA) and European Heart Rhythm Association (EHRA) of the European Society of Cardiology (ESC) describes the physiological rationale behind device-provided therapy and also device-guided management, offers an overview of current implantable device options recommended by the guidelines and proposes a new integrated model of device therapy as a part of HF care.


Asunto(s)
Terapia de Resincronización Cardíaca , Cardiología , Desfibriladores Implantables , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/terapia
7.
Eur J Heart Fail ; 26(3): 598-609, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38247182

RESUMEN

AIMS: Cardiac involvement is the main driver of clinical outcomes in systemic amyloidosis and preliminary studies support the hypothesis that myocardial ischaemia contributes to cellular damage. The aims of this study were to assess the presence and mechanisms of myocardial ischaemia using cardiovascular magnetic resonance (CMR) with multiparametric mapping and histopathological assessment. METHODS AND RESULTS: Ninety-three patients with cardiac amyloidosis (CA) (light-chain amyloidosis n = 42, transthyretin amyloidosis n = 51) and 97 without CA (three-vessel coronary disease [3VD] n = 47, unobstructed coronary arteries n = 26, healthy volunteers [HV] n = 24) underwent quantitative stress perfusion CMR with myocardial blood flow (MBF) mapping. Twenty-four myocardial biopsies and three explanted hearts with CA were analysed histopathologically. Stress MBF was severely reduced in patients with CA with lower values than patients with 3VD, unobstructed coronary arteries and HV (CA: 1.04 ± 0.51 ml/min/g, 3VD: 1.35 ± 0.50 ml/min/g, unobstructed coronary arteries: 2.92 ± 0.52 ml/min/g, HV: 2.91 ± 0.73 ml/min/g; CA vs. 3VD p = 0.011, CA vs. unobstructed coronary arteries p < 0.001, CA vs. HV p < 0.001). Myocardial perfusion abnormalities correlated with amyloid burden, systolic and diastolic function, structural parameters and blood biomarkers (p < 0.05). Biopsies demonstrated abnormal vascular endothelial growth factor staining in cardiomyocytes and endothelial cells, which may be related to hypoxia conditions. Amyloid infiltration in intramural arteries was associated with severe lumen reduction and severe reduction in capillary density. CONCLUSION: Cardiac amyloidosis is associated with severe inducible myocardial ischaemia demonstrable by histology and CMR stress perfusion mapping. Histological evaluation indicates a complex pathophysiology, where in addition to systolic and diastolic dysfunction, amyloid infiltration of the epicardial arteries and disruption and rarefaction of the capillaries play a role in contributing to myocardial ischaemia.


Asunto(s)
Amiloidosis , Cardiomiopatías , Circulación Coronaria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Circulación Coronaria/fisiología , Anciano , Cardiomiopatías/fisiopatología , Cardiomiopatías/diagnóstico , Amiloidosis/fisiopatología , Imagen por Resonancia Cinemagnética/métodos , Miocardio/patología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/fisiopatología , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/complicaciones , Isquemia Miocárdica/fisiopatología , Isquemia Miocárdica/diagnóstico , Neuropatías Amiloides Familiares/fisiopatología , Neuropatías Amiloides Familiares/complicaciones , Imagen de Perfusión Miocárdica/métodos , Vasos Coronarios/fisiopatología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Biopsia
8.
ACS Biomater Sci Eng ; 10(2): 987-997, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38234159

RESUMEN

A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 µm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.


Asunto(s)
Isquemia Miocárdica , Miocitos Cardíacos , Humanos , Constricción , Células Cultivadas , Isquemia
9.
Hypertension ; 81(2): 218-228, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084597

RESUMEN

Hypertensive heart disease (HHD) can no longer be considered as the beneficial adaptive result of the hypertrophy of cardiomyocytes in response to pressure overload leading to the development of left ventricular hypertrophy. The current evidence indicates that in patients with HHD, pathological lesions in the myocardium lead to maladaptive structural remodeling and subsequent alterations in cardiac function, electrical activity, and perfusion, all contributing to poor outcomes. Diffuse myocardial interstitial fibrosis is probably the most critically involved lesion in these disorders. Therefore, in this review, we will focus on the histological characteristics, the mechanisms, and the clinical consequences of myocardial interstitial fibrosis in patients with HHD. In addition, we will consider the most useful tools for the noninvasive diagnosis of myocardial interstitial fibrosis in patients with HHD, as well as the most effective available therapeutic strategies to prevent its development or facilitate its regression in this patient population. Finally, we will issue a call to action for the need for more fundamental and clinical research on myocardial interstitial fibrosis in HHD.


Asunto(s)
Cardiomiopatías , Cardiopatías , Hipertensión , Humanos , Cardiopatías/patología , Miocardio/patología , Hipertrofia Ventricular Izquierda , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/patología , Fibrosis
10.
J Clin Med ; 12(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37685762

RESUMEN

BACKGROUND: Collagen cross-linking is a fundamental process in dilated cardiomyopathy (DCM) and occurs when collagen deposition exceeds degradation, leading to impaired prognosis. This study investigated the associations of collagen-metabolism biomarkers with left ventricular function and prognosis in DCM. METHODS: DCM patients who underwent endomyocardial biopsy, blood sampling, and cardiac MRI were included. The primary endpoint included death, heart failure hospitalization, or life-threatening arrhythmias, with a follow-up of 6 years (5-8). RESULTS: In total, 209 DCM patients were included (aged 54 ± 13 years, 65% male). No associations were observed between collagen volume fraction, circulating carboxy-terminal propeptide of procollagen type-I (PICP), or collagen type I carboxy-terminal telopeptide [CITP] and matrix metalloproteinase [MMP]-1 ratio and cardiac function parameters. However, CITP:MMP-1 was significantly correlated with global longitudinal strain (GLS) in the total study sample (R = -0.40, p < 0.0001; lower CITP:MMP-1 ratio was associated with impaired GLS), with even stronger correlations in patients with LVEF > 40% (R = -0.70, p < 0.0001). Forty-seven (22%) patients reached the primary endpoint. Higher MMP-1 levels were associated with a worse outcome, even after adjustment for clinical and imaging predictors (1.026, 95% CI 1.002-1.051, p = 0.037), but CITP and CITP:MMP-1 were not. Combining MMP-1 and PICP improved the goodness-of-fit (LHR36.67, p = 0.004). CONCLUSION: The degree of myocardial cross-linking (CITP:MMP-1) is associated with myocardial longitudinal contraction, and MMP-1 is an independent predictor of outcome in DCM patients.

11.
Circulation ; 148(9): 778-797, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37427428

RESUMEN

BACKGROUND: Cardiac fibroblasts have crucial roles in the heart. In particular, fibroblasts differentiate into myofibroblasts in the damaged myocardium, contributing to scar formation and interstitial fibrosis. Fibrosis is associated with heart dysfunction and failure. Myofibroblasts therefore represent attractive therapeutic targets. However, the lack of myofibroblast-specific markers has precluded the development of targeted therapies. In this context, most of the noncoding genome is transcribed into long noncoding RNAs (lncRNAs). A number of lncRNAs have pivotal functions in the cardiovascular system. lncRNAs are globally more cell-specific than protein-coding genes, supporting their importance as key determinants of cell identity. METHODS: In this study, we evaluated the value of the lncRNA transcriptome in very deep single-cell RNA sequencing. We profiled the lncRNA transcriptome in cardiac nonmyocyte cells after infarction and probed heterogeneity in the fibroblast and myofibroblast populations. In addition, we searched for subpopulation-specific markers that can constitute novel targets in therapy for heart disease. RESULTS: We demonstrated that cardiac cell identity can be defined by the sole expression of lncRNAs in single-cell experiments. In this analysis, we identified lncRNAs enriched in relevant myofibroblast subpopulations. Selecting 1 candidate we named FIXER (fibrogenic LOX-locus enhancer RNA), we showed that its silencing limits fibrosis and improves heart function after infarction. Mechanitically, FIXER interacts with CBX4, an E3 SUMO protein ligase and transcription factor, guiding CBX4 to the promoter of the transcription factor RUNX1 to control its expression and, consequently, the expression of a fibrogenic gene program.. FIXER is conserved in humans, supporting its translational value. CONCLUSIONS: Our results demonstrated that lncRNA expression is sufficient to identify the various cell types composing the mammalian heart. Focusing on cardiac fibroblasts and their derivatives, we identified lncRNAs uniquely expressed in myofibroblasts. In particular, the lncRNA FIXER represents a novel therapeutic target for cardiac fibrosis.


Asunto(s)
Cardiomiopatías , ARN Largo no Codificante , Animales , Humanos , Transcriptoma , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cardiomiopatías/genética , Fibrosis , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Infarto , Mamíferos/genética , Mamíferos/metabolismo , Ligasas/genética , Ligasas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo
12.
Mol Aspects Med ; 93: 101194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37384998

RESUMEN

Heart failure is a leading cause of mortality and hospitalization worldwide. Cardiac fibrosis, resulting from the excessive deposition of collagen fibers, is a common feature across the spectrum of conditions converging in heart failure. Eventually, either reparative or reactive in nature, in the long-term cardiac fibrosis contributes to heart failure development and progression and is associated with poor clinical outcomes. Despite this, specific cardiac antifibrotic therapies are lacking, making cardiac fibrosis an urgent unmet medical need. In this context, a better patient phenotyping is needed to characterize the heterogenous features of cardiac fibrosis to advance toward its personalized management. In this review, we will describe the different phenotypes associated with cardiac fibrosis in heart failure and we will focus on the potential usefulness of imaging techniques and circulating biomarkers for the non-invasive characterization and phenotyping of this condition and for tracking its clinical impact. We will also recapitulate the cardiac antifibrotic effects of existing heart failure and non-heart failure drugs and we will discuss potential strategies under preclinical development targeting the activation of cardiac fibroblasts at different levels, as well as targeting additional extracardiac processes.


Asunto(s)
Insuficiencia Cardíaca , Miocardio , Humanos , Miocardio/patología , Fibroblastos , Biomarcadores , Fibrosis
13.
Circ Heart Fail ; 16(5): e009694, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192292

RESUMEN

BACKGROUND: We sought to identify protein biomarkers of new-onset heart failure (HF) in 3 independent cohorts (HOMAGE cohort [Heart Omics and Ageing], ARIC study [Atherosclerosis Risk in Communities], and FHS [Framingham Heart Study]) and assess if and to what extent they improve HF risk prediction compared to clinical risk factors alone. METHODS: A nested case-control design was used with cases (incident HF) and controls (without HF) matched on age and sex within each cohort. Plasma concentrations of 276 proteins were measured at baseline in ARIC (250 cases/250 controls), FHS (191/191), and HOMAGE cohort (562/871). RESULTS: In single protein analysis, after adjusting for matching variables and clinical risk factors (and correcting for multiple testing), 62 proteins were associated with incident HF in ARIC, 16 in FHS, and 116 in HOMAGE cohort. Proteins associated with incident HF in all cohorts were BNP (brain natriuretic peptide), NT-proBNP (N-terminal pro-B-type natriuretic peptide), eukaryotic translation initiation factor 4E-BP1 (4E-binding protein 1), hepatocyte growth factor (HGF), Gal-9 (galectin-9), TGF-alpha (transforming growth factor alpha), THBS2 (thrombospondin-2), and U-PAR (urokinase plasminogen activator surface receptor). The increment in C-index for incident HF based on a multiprotein biomarker approach, in addition to clinical risk factors and NT-proBNP, was 11.1% (7.5%-14.7%) in ARIC, 5.9% (2.6%-9.2%) in FHS, and 7.5% (5.4%-9.5%) in HOMAGE cohort, all P<0.001), each of which was a larger increase than that for NT-proBNP on top of clinical risk factors. Complex network analysis revealed a number of overrepresented pathways related to inflammation (eg, tumor necrosis factor and interleukin) and remodeling (eg, extracellular matrix and apoptosis). CONCLUSIONS: A multiprotein biomarker approach improves prediction of incident HF when added to natriuretic peptides and clinical risk factors.


Asunto(s)
Aterosclerosis , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Biomarcadores , Estudios Longitudinales , Factores de Riesgo , Envejecimiento , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Péptido Natriurético Encefálico , Fragmentos de Péptidos
14.
Eur J Heart Fail ; 25(8): 1284-1289, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37062878

RESUMEN

AIM: An echocardiographic algorithm derived by machine learning (e'VM) characterizes pre-clinical individuals with different cardiac structure and function, biomarkers, and long-term risk of heart failure (HF). Our aim was the external validation of the e'VM algorithm and to explore whether it may identify subgroups who benefit from spironolactone. METHODS AND RESULTS: The HOMAGE (Heart OMics in AGEing) trial enrolled participants at high risk of developing HF randomly assigned to spironolactone or placebo over 9 months. The e'VM algorithm was applied to 416 participants (mean age 74 ± 7 years, 25% women) with available echocardiographic variables (i.e. e' mean, left ventricular end-diastolic volume and mass indexed by body surface area [LVMi]). The effects of spironolactone on changes in echocardiographic and biomarker variables were assessed across e'VM phenotypes. A majority (>80%) had either a 'diastolic changes' (D), or 'diastolic changes with structural remodelling' (D/S) phenotype. The D/S phenotype had the highest LVMi, left atrial volume, E/e', natriuretic peptide and troponin levels (all p < 0.05). Spironolactone significantly reduced E/e' and B-type natriuretic peptide (BNP) levels in the D/S phenotype (p < 0.01), but not in other phenotypes (p > 0.10; pinteraction <0.05 for both). These interactions were not observed when considering guideline-recommended echocardiographic structural and functional abnormalities. The magnitude of effects of spironolactone on LVMi, left atrial volume and a type I collagen marker was numerically higher in the D/S phenotype than the D phenotype but the interaction test did not reach significance. CONCLUSIONS: In the HOMAGE trial, the e'VM algorithm identified echocardiographic phenotypes with distinct responses to spironolactone as assessed by changes in E/e' and BNP.


Asunto(s)
Insuficiencia Cardíaca , Espironolactona , Femenino , Masculino , Humanos , Espironolactona/uso terapéutico , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico/fisiología , Ecocardiografía , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/farmacología , Biomarcadores , Función Ventricular Izquierda
15.
Int J Cardiol ; 377: 86-88, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738846

RESUMEN

BACKGROUND: Spironolactone might improve the prognosis of patients with heart failure with preserved left ventricular ejection fraction (HFpEF), but the mechanisms by which it acts are uncertain. Serum concentrations of procollagen type I carboxy-terminal propeptide (PICP) reflect the synthesis of type I collagen and correlate well with histologically proven cardiac fibrosis. AIMS: To investigate the effect of spironolactone on serum PICP concentration in patients with stage B and C HFpEF across three trials (HOMAGE, ALDO-DHF, and TOPCAT) for which measurements of serum PICP were available. METHODS: Random-effects meta-analysis. RESULTS: A total of 1038 patients with PICP measurements available both at baseline and 9-12 months were included in this analysis: 488 (47.0%) from HOMAGE, 386 (37.2%) from ALDO-DHF, and 164 (15.8%) from TOPCAT. The median (percentile25-75) serum PICP was 98 (76-128) ng/mL. Compared to placebo or usual care, administration of spironolactone for 9 to 12 months reduced serum PICP by -7.4 ng/mL, 95%CI -13.9 to -0.9, P-value =0.02. The effect was moderately heterogeneous (I2 = 64%) with the most pronounced effect seen in TOPCAT where PICP was reduced by -27.0 ng/mL, followed by HOMAGE where PICP was reduced by -8.1 ng/mL, and was least marked in ALDO-DHF where PICP changed by -2.9 ng/mL. The association between spironolactone and serum PICP was not mediated substantially by blood pressure. CONCLUSIONS: Spironolactone reduced serum concentrations of PICP in patients with HFpEF with different severity and stages of disease. These findings are consistent with spironolactone having an anti-fibrotic effect.


Asunto(s)
Insuficiencia Cardíaca , Espironolactona , Humanos , Espironolactona/uso terapéutico , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Volumen Sistólico , Función Ventricular Izquierda , Ensayos Clínicos Controlados Aleatorios como Asunto , Fibrosis , Procolágeno/farmacología , Procolágeno/uso terapéutico , Fragmentos de Péptidos
16.
Cerebrovasc Dis Extra ; 13(1): 18-32, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36646051

RESUMEN

INTRODUCTION: Microvascular rarefaction, the functional reduction in perfused microvessels and structural reduction of microvascular density, seems to be an important mechanism in the pathophysiology of small blood vessel-related disorders including vascular cognitive impairment (VCI) due to cerebral small vessel disease and heart failure with preserved ejection fraction (HFpEF). Both diseases share common risk factors including hypertension, diabetes mellitus, obesity, and ageing; in turn, these comorbidities are associated with microvascular rarefaction. Our consortium aims to investigate novel non-invasive tools to quantify microvascular health and rarefaction in both organs, as well as surrogate biomarkers for cerebral and/or cardiac rarefaction (via sublingual capillary health, vascular density of the retina, and RNA content of circulating extracellular vesicles), and to determine whether microvascular density relates to disease severity. METHODS: The clinical research program of CRUCIAL consists of four observational cohort studies. We aim to recruit 75 VCI patients, 60 HFpEF patients, 60 patients with severe aortic stenosis (AS) undergoing surgical aortic valve replacement as a pressure overload HFpEF model, and 200 elderly participants with mixed comorbidities to serve as controls. Data collected will include medical history, physical examination, cognitive testing, advanced brain and cardiac MRI, ECG, echocardiography, sublingual capillary health, optical coherence tomography angiography (OCTa), extracellular vesicles RNA analysis, and myocardial remodelling-related serum biomarkers. The AS cohort undergoing surgery will also have myocardial biopsy for histological microvascular assessment. DISCUSSION: CRUCIAL will examine the pathophysiological role of microvascular rarefaction in VCI and HFpEF using advanced brain and cardiac MRI techniques. Furthermore, we will investigate surrogate biomarkers for non-invasive, faster, easier, and cheaper assessment of microvascular density since these are more likely to be disseminated into widespread clinical practice. If microvascular rarefaction is an early marker of developing small vessel diseases, then measuring rarefaction may allow preclinical diagnosis, with implications for screening, risk stratification, and prevention. Further knowledge of the relevance of microvascular rarefaction and its underlying mechanisms may provide new avenues for research and therapeutic targets.


Asunto(s)
Disfunción Cognitiva , Insuficiencia Cardíaca , Rarefacción Microvascular , Humanos , Anciano , Insuficiencia Cardíaca/diagnóstico por imagen , Volumen Sistólico , Disfunción Cognitiva/diagnóstico , Biomarcadores , ARN , Estudios Observacionales como Asunto
17.
JACC Heart Fail ; 11(1): 58-72, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599551

RESUMEN

BACKGROUND: Myocardial fibrosis may increase vulnerability to poor prognosis in patients with heart failure (HF), even in those patients exhibiting left ventricular reverse remodeling (LVRR) after guideline-based therapies. OBJECTIVES: This study sought to characterize fibrosis at baseline in patients with HF with left ventricular ejection fraction (LVEF) <50% by determining serum collagen type I-derived peptides (procollagen type I C-terminal propeptide [PICP] and ratio of collagen type I C-terminal telopeptide to matrix metalloproteinase-1) and to evaluate their association with LVRR and prognosis. METHODS: Peptides were determined in 1,034 patients with HF at baseline. One-year echocardiography was available in 665 patients. Associations of peptides with 1-year changes in echocardiographic variables were analyzed by multivariable linear mixed models. LVEF was considered improved if it increased by ≥15% or to ≥50% or if it increased by ≥10% to >40% in patients with LVEF ≤40%. Cardiovascular death and HF-related outcomes were analyzed in all patients randomized to derivation (n = 648) and validation (n = 386) cohorts. RESULTS: Continuous associations with echocardiographic changes were observed only for PICP. Compared with high-PICP (≥108.1 ng/mL) patients, low-PICP (<108.1 ng/mL) patients exhibited enhanced LVRR and a lower risk of HF-related outcomes (P ≤ 0.018), with women and nonischemic patients with HF showing a stronger LVEF increase (interaction P ≤ 0.010). LVEF increase was associated with a better prognosis, particularly in low-PICP patients (interaction P ≤ 0.029). Only patients with both low PICP and improved LVEF exhibited a better clinical evolution than patients with nonimproved LVEF (P < 0.001). CONCLUSIONS: Phenotyping with PICP, a peptide associated with myocardial fibrosis, may be useful to differentiate patients with HF who are more likely to experience clinical myocardial recovery from those with partial myocardial improvement.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Humanos , Femenino , Colágeno Tipo I , Volumen Sistólico , Función Ventricular Izquierda , Fragmentos de Péptidos , Procolágeno , Biomarcadores , Colágeno , Péptidos , Fibrosis
18.
Metabolism ; 138: 155348, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410495

RESUMEN

Exercise intolerance remains a major unmet medical need in patients with heart failure (HF). Skeletal myopathy is currently considered as the major limiting factor for exercise capacity in HF patients. On the other hand, emerging evidence suggest that physical exercise can decrease morbidity and mortality in HF patients. Therefore, mechanistic insights into skeletal myopathy may uncover critical aspects for therapeutic interventions to improve exercise performance in HF. Emerging data reviewed in this article suggest that the assessment of circulating myokines (molecules synthesized and secreted by skeletal muscle in response to contraction that display autocrine, paracrine and endocrine actions) may provide new insights into the pathophysiology, phenotyping and prognostic stratification of HF-related skeletal myopathy. Further studies are required to determine whether myokines may also serve as biomarkers to personalize the modality and dose of physical training prescribed for patients with HF and exercise intolerance. In addition, the production and secretion of myokines in patients with HF may interact with systemic alterations (e.g., inflammation and metabolic disturbances), frequently present in patients with HF. Furthermore, myokines may exert beneficial or detrimental effects on cardiac structure and function, which may influence adverse cardiac remodelling and clinical outcomes in HF patients. Collectively, these data suggest that a deeper knowledge on myokines regulation and actions may lead to the identification of novel physical exercise-based therapeutic approaches for HF patients.


Asunto(s)
Insuficiencia Cardíaca , Enfermedades Musculares , Humanos , Ejercicio Físico/fisiología , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Insuficiencia Cardíaca/metabolismo , Inflamación/metabolismo
19.
J Sport Health Sci ; 12(2): 147-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36351545

RESUMEN

BACKGROUND: This study investigates the effects of exercise training on exerkines in patients with type 2 diabetes mellitus to determine the optimal exercise prescription. METHODS: A systematic search for relevant studies was performed in 3 databases. Randomized controlled trials investigating the effects of exercise training on at least one of the following exerkines were included: adiponectin, apelin, brain-derived neurotrophic factor, fetuin-A, fibroblast growth factor-21, follistatin, ghrelin, interleukin (IL)-6, IL-8, IL-10, IL-15, IL-18, leptin, myostatin, omentin, resistin, retinol-binding protein 4, tumor necrosis factor-α, and visfatin. RESULTS: Forty randomized controlled trials were selected for data extraction (n = 2160). Exercise training induces changes in adiponectin, fetuin-A, fibroblast growth factor-21, IL-6, IL-10, leptin, resistin, and tumor necrosis factor-α levels but has no significant effects on apelin, IL-18, and ghrelin compared to controls. Physical exercise training favored large and positive changes in pooled exerkines (i.e., an overall effect size calculated from several exerkines) (Hedge's g = 1.02, 95% confidence interval (95%CI): 0.76-1.28), which in turn were related to changes in glycated hemoglobin (mean difference (MD) = -0.81%, 95%CI: -0.95% to -0.67%), fasting glucose (MD = -23.43 mg/dL, 95%CI: -30.07 mg/dL to -16.80 mg/dL), waist circumference (MD = -3.04 cm, 95%CI: -4.02 cm to -2.07 cm), and body mass (MD = -1.93 kg, 95%CI: -2.00 kg to -1.86 kg). Slightly stronger effects were observed with aerobic, resistance, or high-intensity interval protocols at moderate- to vigorous-intensity and with programs longer than 24 weeks that comprise at least 3 sessions per week and more than 60 min per session. CONCLUSION: Exercise training represents an anti-inflammatory therapy and metabolism-improving strategy with minimal side effects for patients with type 2 diabetes mellitus.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Resistina/metabolismo , Apelina/metabolismo , Leptina , Ghrelina/metabolismo , Interleucina-10/metabolismo , Interleucina-18/metabolismo , Adiponectina/metabolismo , alfa-2-Glicoproteína-HS , Factor de Necrosis Tumoral alfa/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto , Ejercicio Físico , Factores de Crecimiento de Fibroblastos/metabolismo
20.
Commun Biol ; 5(1): 1392, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539599

RESUMEN

Heart failure is a major cause of morbidity and mortality worldwide, and can result from pressure overload, where cardiac remodelling is characterized by cardiomyocyte hypertrophy and death, fibrosis, and inflammation. In failing hearts, transforming growth factor (TGF)ß drives cardiac fibroblast (CFB) to myofibroblast differentiation causing excessive extracellular matrix production and cardiac remodelling. New strategies to target pathological TGFß signalling in heart failure are needed. Here we show that the secreted glycoprotein ADAMTSL3 regulates TGFß in the heart. We found that Adamtsl3 knock-out mice develop exacerbated cardiac dysfunction and dilatation with increased mortality, and hearts show increased TGFß activity and CFB activation after pressure overload by aortic banding. Further, ADAMTSL3 overexpression in cultured CFBs inhibits TGFß signalling, myofibroblast differentiation and collagen synthesis, suggesting a cardioprotective role for ADAMTSL3 by regulating TGFß activity and CFB phenotype. These results warrant future investigation of the potential beneficial effects of ADAMTSL3 in heart failure.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Ratones , Animales , Ratones Noqueados , Dilatación , Remodelación Ventricular/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...