Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-9, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482803

RESUMEN

Environmental release of wastewater that contains cytostatic drugs can cause genotoxic impact, since these drugs act directly on the genetic material of aquatic organisms. Thus, the aim of this study was to evaluate the removal of the cytostatic drugs cytarabine (CTR) and methotrexate (MTX) using different physico-chemical methods individually (i.e. US, O3, H2O2 and UV) and combined (i.e. O3/US, US/H2O2, O3/H2O2 and O3/US/H2O2) under different pH conditions (4, 7 and 10). In the degradation tests, the efficiency of the methods applied was found to be dependent on the pH of the solution, with the degradation of CTR being better at pH 4 and MTX at pH 7 and pH 10. The US, H2O2 and US + H2O2 methods were the least efficient in degrading CTR and MTX under the pH conditions tested. The highest MTX degradation rate after 16 min of treatment at pH 7 was achieved by the O3 + H2O2 method (97.05% - C/C0 = 0.0295). For CTR, the highest degradation rate after 16 min of treatment was achieved by the O3 process (99.70% - C/C0 = 0.0030) at pH 4. In conclusion, most of the treatment methods tested for the degradation of CTR and MTX are effective. Notably, ozonolysis is an efficient process applied alone. Also, in combination with other methods (US + O3, O3 + H2O2 and O3 + H2O2 + US) it increases the degradation performance, showing a rapid removal rate of 70-94% in less than 4 min of treatment.

2.
Cellulose (Lond) ; 30(5): 2687-2712, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36741334

RESUMEN

Functionalized textiles have been increasingly used for enhancing antimicrobial or antiviral (antipathogenic) action. Those pathogens can cause recurring diseases by direct or indirect transmission. Particularly, airborne microorganisms may cause respiratory diseases or skin infections like allergies and acne and the use of inorganic agents such as metal and metal oxides has proven effective in antipathogen applications. This review is a tutorial on how to obtain functional fabric with processes easily applied for industrial scale. Also, this paper summarizes relevant textiles and respective incorporated inorganic agents, including their antipathogenic mechanism of action. In addition, the processing methods and functional finishing, on a laboratory and industrial scale, to obtain a functional textile are shown. Characterization techniques, including antipathogenic activity and durability, mechanical properties, safety, and environmental issues, are presented. Challenges and perspectives on the broader use of antipathogenic fabrics are discussed.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36734197

RESUMEN

The literature reports the presence of multiresistant microorganisms in wastewater discharged from municipal and hospital wastewater treatment plants (WWTPs). This has led to questions concerning the disinfection efficiency of the treatments applied. Thus, this study aimed to assess the efficiency of different chemical oxidation methods to disinfect and to degrade bacterial plasmids present in hospital wastewaters, to avoid the dispersion of antibiotic resistance genes in the environment. The methods tested were UV254nm alone or associated with an Ag or Ti-photocatalyst in photo-peroxonization (UV254 nm/H2O2/O3/Ag2O/Ag2CO3@PU or UV254 nm/H2O2/O3/TiO2@PU) under different pH conditions (4, 7, and 10). The application of plasmid DNA electrophoresis to hospital wastewater treated using an advanced oxidation process (AOP) achieved the total structural denaturation of microorganism plasmids at the three pH values tested. Also, UV254 nm alone was partially efficient in the disinfection of hospital wastewater. AOPs performed with the two functionalized catalysts resulted in 100% disinfection after 10 min at the three pH values tested. No intact plasmids were observed after 20 min of treatment with photocatalysis. This study could contribute to the development and improvement of wastewater treatment aimed at mitigating the spread of multiresistant microorganisms in the environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Peróxido de Hidrógeno/química , ADN , Bacterias/genética , Plásmidos/genética , Oxidación-Reducción , Hospitales , Purificación del Agua/métodos , Desinfección/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-36281981

RESUMEN

The goal of this study was to assess the efficiency of antibiotic degradation applying different chemical treatment methods and their combinations. Thus, improvement in the efficiency of these methods when combined was quantified. The methods tested to degrade/mineralize the antibiotics amoxicillin (AMX) and ciprofloxacin (CIP) under different pH conditions (4, 7 and 10) were ultra-violet irradiation (UV254 nm), ultrasound (US), hydrogen peroxide (H2O2) and ozone (O3) alone and in combination. The results showed that individual methods were only partially efficient in the degradation/mineralization of antibiotics, except for ozonation at alkaline pH. In the combined methods, the best performance was obtained with US/UV/H2O2/O3 (pH 10, 20-min treatment), where the degradation rates for the antibiotics were 99.8% for CIP and 99.9% for AMX. For the mineralization efficiency the values obtained were 71.3% for CIP and 79.2% for AMX. The results of this study could contribute to the development and improvement of wastewater treatment aimed at avoiding the presence of residual antibiotics in the environment.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Amoxicilina , Ciprofloxacina/química , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...