Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroendocrinol ; 30(11): e12649, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30303567

RESUMEN

Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3ß-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.


Asunto(s)
Encéfalo/enzimología , Encéfalo/metabolismo , Vaina de Mielina/enzimología , Vaina de Mielina/metabolismo , Remielinización , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Encéfalo/efectos de los fármacos , Colestenona 5 alfa-Reductasa/metabolismo , Cuprizona/administración & dosificación , Sistema Enzimático del Citocromo P-450/metabolismo , Modelos Animales de Enfermedad , Femenino , Ratones Endogámicos C57BL , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/metabolismo , Vaina de Mielina/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuroglía/enzimología , Neuroglía/metabolismo , Fosfoproteínas/metabolismo , Receptores de GABA/metabolismo , Remielinización/efectos de los fármacos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
2.
Arq Neuropsiquiatr ; 69(4): 699-706, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21877044

RESUMEN

This article briefly describes the already known clinical features and pathogenic mechanisms underlying sporadic amyotrophic lateral sclerosis, namely excitoxicity, oxidative stress, protein damage, inflammation, genetic abnormalities and neuronal death. Thereafter, it puts forward the hypothesis that astrocytes may be the cells which serve as targets for the harmful action of a still unknown environmental agent, while neuronal death may be a secondary event following the initial insult to glial cells. The article also suggests that an emergent virus or a misfolded infectious protein might be potential candidates to accomplish this task.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Astrocitos/patología , Estrés Oxidativo/fisiología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Muerte Celular/fisiología , Ácido Glutámico/metabolismo , Humanos , Neuronas/fisiología , Neurotoxinas/metabolismo , Proteínas Nucleares/metabolismo
3.
Growth Horm IGF Res ; 14 Suppl A: S18-33, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15135772

RESUMEN

Progesterone (PROG) is synthesized in the brain, spinal cord and peripheral nerves. Its direct precursor pregnenolone is either derived from the circulation or from local de novo synthesis as cytochrome P450scc, which converts cholesterol to pregnenolone, is expressed in the nervous system. Pregnenolone is converted to PROG by 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In situ hybridization studies have shown that this enzyme is expressed throughout the rat brain, spinal cord and dorsal root ganglia (DRG) mainly by neurons. Macroglial cells, including astrocytes, oligodendroglial cells and Schwann cells, also have the capacity to synthesize PROG, but expression and activity of 3beta-HSD in these cells are regulated by cellular interactions. Thus, Schwann cells convert pregnenolone to PROG in response to a neuronal signal. There is now strong evidence that P450scc and 3beta-HSD are expressed in the human nervous system, where PROG synthesis also takes place. Although there are only a few studies addressing the biological significance of PROG synthesis in the brain, the autocrine/paracrine actions of locally synthesized PROG are likely to play an important role in the viability of neurons and in the formation of myelin sheaths. The neuroprotective effects of PROG have recently been documented in a murine model of spinal cord motoneuron degeneration, the Wobbler mouse. The treatment of symptomatic Wobbler mice with PROG for 15 days attenuated the neuropathological changes in spinal motoneurons and had beneficial effects on muscle strength and the survival rate of the animals. PROG may exert its neuroprotective effects by regulating expression of specific genes in neurons and glial cells, which may become hormone-sensitive after injury. The promyelinating effects of PROG were first documented in the mouse sciatic nerve and in co-cultures of sensory neurons and Schwann cells. PROG also promotes myelination in the brain, as shown in vitro in explant cultures of cerebellar slices and in vivo in the cerebellar peduncle of aged rats after toxin-induced demyelination. Local synthesis of PROG in the brain and the neuroprotective and promyelinating effects of this neurosteroid offer interesting therapeutic possibilities for the prevention and treatment of neurodegenerative diseases, for accelerating regenerative processes and for preserving cognitive functions during aging.


Asunto(s)
Vaina de Mielina/metabolismo , Sistema Nervioso/metabolismo , Progesterona/fisiología , Animales , Comunicación Autocrina , Encéfalo/metabolismo , Humanos , Comunicación Paracrina , Sistema Nervioso Periférico/metabolismo , Progesterona/biosíntesis , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...