Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Mosq Control Assoc ; 37(4): 198-207, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817614

RESUMEN

Accurate identification of mosquito species is essential to support programs that involve the study of distribution and mosquito control. Numerous mosquito species are difficult to identify based only on morphological characteristics, due to the morphological similarities in different life stages and large numbers of some species that are members of morphologically similar species complexes. In the present study, the mosquitoes collected in the Pantanos de Centla Biosphere Reserve, southeastern Mexico, were evaluated using a combination of morphological and molecular approaches (mitochondrial cytochrome c oxidase subunit I [COI] DNA barcode). A total of 1,576 specimens of 10 genera and 35 species, mostly adult stages, were collected. A total of 225 COI DNA barcode sequences were analyzed; most species formed well-supported groups in the neighbor joining, maximum likelihood, and Bayesian inference trees. The intraspecific Kimura 2-parameter (K2P) genetic distance averaged 1.52%. An intraspecific K2P distance of 6.20% was observed in Anopheles crucians s.l., while a deep split was identified in Culex erraticus and Cx. conspirator. This study showed that COI DNA barcodes offer a reliable approach to support mosquito species identification in Mexico.


Asunto(s)
Culex , Código de Barras del ADN Taxonómico , Animales , Teorema de Bayes , Culex/genética , Complejo IV de Transporte de Electrones/genética , México , Filogenia
2.
Biology (Basel) ; 9(9)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899580

RESUMEN

The general bacterial microbiota of the soft tick Ornithodoros turicata found on Bolson tortoises (Gopherus flavomarginatus) were analyzed using next generation sequencing. The main aims of the study were to establish the relative abundance of bacterial taxa in the tick, and to document the presence of potentially pathogenic species for this tortoise, other animals, and humans. The study was carried-out in the Mapimi Biosphere Reserve in the northern-arid part of Mexico. Bolson tortoises (n = 45) were inspected for the presence of soft ticks, from which 11 tortoises (24.4%) had ticks in low loads (1-3 ticks per individual). Tick pools (five adult ticks each) were analyzed through 16S rRNA V3-V4 region amplification in a MiSeq Illumina, using EzBioCloud as a taxonomical reference. The operational taxonomic units (OTUs) revealed 28 phyla, 84 classes, 165 orders, 342 families, 1013 genera, and 1326 species. The high number of taxa registered for O. turicata may be the result of the variety of hosts that this tick parasitizes as they live inside G. flavomarginatus burrows. While the most abundant phyla were Proteobacteria, Actinobacteria, and Firmicutes, the most abundant species were two endosymbionts of ticks (Midichloria-like and Coxiella-like). Two bacteria documented as pathogenic to Gopherus spp. were registered (Mycoplasma spp. and Pasteurella testudinis). The bovine and ovine tick-borne pathogens A. marginale and A. ovis, respectively, were recorded, as well as the zoonotic bacteria A. phagocytophilum,Coxiella burnetii, and Neoehrlichia sp. Tortoises parasitized with O. turicata did not show evident signs of disease, which could indicate a possible ecological role as a reservoir that has yet to be demonstrated. In fact, the defense mechanisms of this tortoise against the microorganisms transmitted by ticks during their feeding process are still unknown. Future studies on soft ticks should expand our knowledge about what components of the microbiota are notable across multiple host-microbe dynamics. Likewise, studies are required to better understand the host competence of this tortoise, considered the largest terrestrial reptile in North America distributed throughout the Chihuahuan Desert since the late Pleistocene.

3.
Front Vet Sci ; 7: 564791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33778029

RESUMEN

There are ~240 species of Culicidae in Mexico, of which some are vectors of arthropod-borne viruses such as Zika virus, dengue virus, chikungunya virus, and West Nile virus. Thus, the identification of mosquito feeding preferences is paramount to understanding of vector-host-pathogen interactions that, in turn, can aid the control of disease outbreaks. Typically, DNA and RNA are extracted separately for animal (insects and blood meal hosts) and viral identification, but this study demonstrates that multiple organisms can be analyzed from a single RNA extract. For the first time, residual DNA present in standard RNA extracts was analyzed by DNA barcoding in concert with Sanger and next-generation sequencing (NGS) to identify both the mosquito species and the source of their meals in blood-fed females caught in seven sylvan communities in Chiapas State, Mexico. While mosquito molecular identification involved standard barcoding methods, the sensitivity of blood meal identification was maximized by employing short primers with NGS. In total, we collected 1,634 specimens belonging to 14 genera, 25 subgenera, and 61 morphospecies of mosquitoes. Of these, four species were new records for Mexico (Aedes guatemala, Ae. insolitus, Limatus asulleptus, Trichoprosopon pallidiventer), and nine were new records for Chiapas State. DNA barcode sequences for >300 bp of the COI gene were obtained from 291 specimens, whereas 130 bp sequences were recovered from another 179 specimens. High intraspecific divergence values (>2%) suggesting cryptic species complexes were observed in nine taxa: Anopheles eiseni (5.39%), An. pseudopunctipennis (2.79%), Ae. podographicus (4.05%), Culex eastor (4.88%), Cx. erraticus (2.28%), Toxorhynchites haemorrhoidalis (4.30%), Tr. pallidiventer (4.95%), Wyeomyia adelpha/Wy. guatemala (7.30%), and Wy. pseudopecten (4.04%). The study increased the number of mosquito species known from 128 species to 138 species for Chiapas State, and 239 for Mexico as a whole. Blood meal analysis showed that Aedes angustivittatus fed on ducks and chicken, whereas Psorophora albipes fed on humans. Culex quinquefasciatus fed on diverse hosts including chicken, human, turkey, and Mexican grackle. No arbovirus RNA was detected by reverse transcriptase-polymerase chain reaction in the surveyed specimens. This study demonstrated, for the first time, that residual DNA present in RNA blood meal extracts can be used to identify host vectors, highlighting the important role of molecular approaches in both vector identification and revealing host-vector-pathogen interactions.

4.
Heliyon ; 5(10): e02660, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31692696

RESUMEN

Mosquitoes are the most important arthropods from the point of view of public health, due to the fact that they can transmit a large number of pathogens which can cause diseases to humans and animals. Aedes aegypti (L.) is one of the most important vector species in the world, since it can transmit numerous pathogens such as dengue, Zika, and chikungunya. Therefore, studies involving the molecular aspects of this and other mosquitoes species are currently increasing. In this report, we describe the comparison between two DNA extraction techniques, Chelex and cetyltrimethylammonium bromide (CTAB), for carrying out DNA extraction in larvae, pupae and adult female of Ae. aegypti. The Chelex technique was superior in the amount and purity of DNA as compared to the CTAB technique in the three life stages we tested.

5.
J Vector Ecol ; 44(1): 57-67, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31124227

RESUMEN

To document and update the mosquito species of Tabasco, Mexico, field collection trips were conducted in the two physiographic regions of Tabasco: the coastal plain of the southern gulf and the mountains of Chiapas and Guatemala. Mosquitoes were collected as immature and adult stages during the dry and rainy seasons from 2014 through 2015. Additionally, the Reference Collection of Arthropods of Medical Importance (CAIM-InDRE) containing mosquitoes of Tabasco was re-examined. In total, 4,913 specimens were collected and examined, which are divided into seven tribes, 18 genera, 27 subgenera, and 104 species. Of these, one genus (Shannoniana Lane and Cerqueira), two subgenera (Georgecraigius Reinert, Harbach and Kitching, and Carrollia Lutz), and 21 species are new records for the mosquito fauna of Tabasco. Culex metempsytus Dyar is a new record for Mexico and Wyeomyia jocosa (Dyar and Knab) is removed from the Mexican mosquito fauna. Seventeen species historically reported were not found in the field collections conducted here. Taxonomic notes, new distribution limits, and comments about the medical importance of species of mosquitoes of Tabasco are discussed. Tabasco is the second state in Mexico with the largest mosquito richness (104 species), followed by Veracruz with 139 species.


Asunto(s)
Culicidae/clasificación , Mosquitos Vectores , Virosis/transmisión , Distribución Animal , Animales , Culicidae/fisiología , Humanos , México
6.
Parasit Vectors ; 12(1): 130, 2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30909949

RESUMEN

BACKGROUND: The aim of this study was to detect and molecularly identify Rickettsia spp. in Rhipicephalus sanguineus (sensu lato) collected from free-roaming dogs in 30 communities from five municipalities in the south of Coahuila State, northern Mexico, where Rocky Mountain spotted fever is endemic. METHODS: In total, 60 dogs from each municipality were examined for engorged ticks. DNA was isolated from tick pools and conventional PCR assays targeting the 23S-5S ribosomal RNA intergenic spacer and outer membrane protein (ompA) gene of Rickettsia spp. were performed. RESULTS: All ticks (n = 1238) were morphologically identified as R. sanguineus (s.l.). Six pools (each with six engorged females) from four municipalities were positive to Rickettsia spp. DNA sequencing and phylogenetic analyses confirmed the presence of R. rickettsii and R. rhipicephali in R. sanguineus (s.l.) in these ticks. CONCLUSIONS: This study confirms the presence of R. rickettsii and R. rhipicephali in R. sanguineus (s.l.) from stray dogs in the south of Coahuila. This suggests that stray dogs may play a role in the inter-municipal dissemination of infected ticks in this region. Further research is required to assess whether ticks from stray dogs could serve as good indicators for the molecular xenomonitoring of R. rickettsii in this region. Considering that R. sanguineus (s.l.) is a proven vector of R. rickettsii in Mexico, increased awareness regarding permanent tick control in dogs is warranted.


Asunto(s)
Enfermedades de los Perros/parasitología , Rhipicephalus sanguineus/microbiología , Rickettsia/aislamiento & purificación , Infestaciones por Garrapatas/veterinaria , Animales , Enfermedades de los Perros/microbiología , Perros , Femenino , Masculino , México , Tipificación Molecular/veterinaria , Filogenia , Reacción en Cadena de la Polimerasa/veterinaria , Rickettsia/clasificación , Infestaciones por Garrapatas/microbiología , Infestaciones por Garrapatas/parasitología
7.
Ticks Tick Borne Dis ; 7(2): 276-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26615872

RESUMEN

The tick-borne pathogens Ehrlichia canis and Anaplasma platys are the causative agents of canine monocytic ehrlichiosis (CME) and canine cyclic thrombocytopenia (CCT). Although molecular evidence of E. canis has been shown, phylogenetic analysis of this pathogen has not been performed and A. platys has not been identified in Mexico, where the tick vector Rhipicephalus sanguineus sensu lato (s.l.) is common. The aim of this research was to screen, identify and characterize E. canis and A. platys by PCR and phylogenetic analysis in dogs from La Comarca Lagunera, a region formed by three municipalities, Torreon, Gomez-Palacio and Lerdo, in the Northern states of Coahuila and Durango, Mexico. Blood samples and five engorged R. sanguineus s.l. ticks per animal were collected from 43 females and 57 male dogs presented to veterinary clinics or lived in the dog shelter from La Comarca Lagunera. All the sampled dogs were apparently healthy and PCR for Anaplasma 16S rRNA, Ehrlichia 16S rRNA, and E. canis trp36 were performed. PCR products were sequenced and used for phylogenetic analysis. PCR products were successfully amplified in 31% of the samples using primers for Anaplasma 16S rRNA, while 10% and 4% amplified products using primers for Ehrlichia 16S rRNA and E. canis trp36 respectively. Subsequent sequencing and phylogenetic analyses of these products showed that three samples corresponded to A. platys and four to E. canis. Based on the analysis of trp36 we confirmed that the E. canis strains isolated from Mexico belong to a conservative clade of E. canis and are closely related to strains from USA. In conclusion, this is the first molecular identification of A. platys and the first molecular characterization and phylogenetic study of both A. platys and E. canis in dogs in Mexico.


Asunto(s)
Anaplasma/aislamiento & purificación , Anaplasmosis/microbiología , Enfermedades de los Perros/microbiología , Ehrlichia canis/aislamiento & purificación , Ehrlichiosis/veterinaria , Anaplasma/genética , Anaplasmosis/epidemiología , Animales , Vectores Arácnidos/microbiología , Enfermedades de los Perros/epidemiología , Perros , Ehrlichia canis/genética , Ehrlichiosis/epidemiología , Ehrlichiosis/microbiología , Femenino , Masculino , México/epidemiología , Filogenia , ARN Ribosómico 16S/genética , Rhipicephalus sanguineus/microbiología , Análisis de Secuencia de ADN/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...