Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38786776

RESUMEN

Here, we investigate the correlation between the heat generated by gold nanoparticles, in particular nanospheres and nanobipyramids, and their plasmonic response manifested by the presence of Localized Surface Plasmon Resonances (LSPRs). Using a tunable laser and a thermal camera, we measure the temperature increase induced by colloidal nanoparticles in an aqueous solution as a function of the excitation wavelength in the optical regime. We demonstrate that the photothermal performances of the nanoparticles are strongly related not only to their plasmonic properties but also to the size and shape of the nanoparticles. The contribution of the longitudinal and transversal modes in gold nanobipyramids is also analyzed in terms of heat generation. These results will guide us to design appropriate nanoparticles to act as efficient heat nanosources.

2.
Sci Rep ; 12(1): 14222, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35987802

RESUMEN

The combination of materials with radically different physical properties in the same nanostructure gives rise to the so-called Janus effects, allowing phenomena of a contrasting nature to occur in the same architecture. Interesting advantages can be taken from a thermal Janus effect for photoinduced hyperthermia cancer therapies. Such therapies have limitations associated to the heating control in terms of temperature stability and energy management. Single-material plasmonic nanoheaters have been widely used for cancer therapies, however, they are highly homogeneous sources that heat the surrounding biological medium isotropically, thus equally affecting cancerous and healthy cells. Here, we propose a prototype of a Janus-Nanojet heating unit based on toroidal shaped plasmonic nanoparticles able to efficiently generate and release local heat directionally under typical unpolarized illumination. Based on thermoplasmonic numerical calculations, we demonstrate that these Janus-based nanoheaters possess superior photothermal conversion features (up to [Formula: see text] K) and unique directional heating capacity, being able to channel up over 90% of the total thermal energy onto a target. We discuss the relevance of these innovative nanoheaters in thermoplasmonics, and hyperthermia cancer therapies, which motivate the development of fabrication techniques for nanomaterials.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Nanoestructuras , Neoplasias , Calor , Humanos , Hipertermia Inducida/métodos , Nanoestructuras/química , Neoplasias/terapia
3.
J Phys Chem Lett ; 13(26): 6230-6235, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35770967

RESUMEN

High refractive index (HRI) dielectric nanostructures offer a versatile platform to control the light-matter interaction at the nanoscale as they can easily support electric and magnetic modes with low losses. An additional property that makes them extraordinary is that they can support low radiative modes, so-called anapole modes. In this work, we propose a spectrally tunable anapole nanoheater based on the use of a dielectric anapole resonator. We show that a gold ring nanostructure, a priori nonresonant, can be turned into a resonant unit by just filling its hole with an HRI material supporting anapole modes, resulting in a more efficient nanoheater able to amplify the photothermal response of the bare nanoring. As proof of concept, we perform a detailed study of the thermoplasmonic response of a gold nanoring used as heating source and a silicon disk, designed to support anapole modes, located in its center acting as an anapolar resonator. Furthermore, we utilize the anapole excitation to easily shift the thermal response of these structures from the shortwave infrared range to the near-infrared range.

4.
Opt Express ; 30(1): 125-137, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35201187

RESUMEN

Photoinduced hyperthermia is a cancer therapy technique that induces death to cancerous cells via heat generated by plasmonic nanoparticles. While previous studies have shown that some nanoparticles can be effective at killing cancer cells under certain conditions, there is still a necessity (or the need) to improve its heating efficiency. In this work, we perform a detailed theoretical study comparing the thermoplasmonic response of the most effective nanoparticle geometries up to now with a doughnut-shaped nanoparticle. We numerically demonstrate that the latter exhibits a superior tunable photothermal response in practical illumination conditions (unpolarized light). Furthermore, we show that nanoparticle heating in fluidic environments, i.e., nanoparticles undergoing Brownian rotations, strongly depends on the particle orientation with respect to the illumination source. We conclude that nanodoughnuts are the best nanoheaters in our set of structures, with an average temperature increment 40% higher than the second best nanoheater (nanodisk). Furthermore, nanodoughnuts feature a weak dependence on orientation, being therefore ideal candidates for photothermal therapy applications. Finally, we present a designing guide, covering a wide range of toroid designs, which can help on its experimental implementation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oro/química , Nanopartículas del Metal/química
5.
Opt Express ; 29(9): 13733-13745, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33985103

RESUMEN

Optical biosensing is currently an intensively active research area, with an increasing demand of highly selective, sensitivity-enhanced and low-cost devices where different plasmonic approaches have been developed. In this work we propose a tunable optimized grating-based gold metasurface that can act both as a high sensitivity sensor device (up to 1500 nm/RIU) and as an unidirectional plasmon source. The theory behind surface plasmon polariton generation is recalled to thoroughly understand the influence that every parameter of the grating source has on the performance of the proposed device. The results and conclusions discussed here offer a key step toward the design of biosensors based on excitation of surface plasmons polaritons by grating-based structures or in the process of creating new nanophotonic circuit devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA