Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 16(3): e1007605, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32119665

RESUMEN

Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion.


Asunto(s)
Canales de Calcio/metabolismo , Erizos de Mar/metabolismo , Espermatozoides/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Quimiotaxis/fisiología , Biología Computacional/métodos , Iones/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Modelos Teóricos , Transducción de Señal , Motilidad Espermática/fisiología
2.
J Physiol ; 597(1): 137-149, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30334255

RESUMEN

KEY POINTS: At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq-protein-coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. ABSTRACT: During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium-activated, high-conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage-dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.


Asunto(s)
Miocitos del Músculo Liso/fisiología , Miometrio/fisiología , Oxitocina/fisiología , Canales de potasio activados por Sodio/antagonistas & inhibidores , Animales , Células Cultivadas , Femenino , Humanos , Oocitos/fisiología , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/fisiología , Contracción Uterina/fisiología , Xenopus laevis
3.
eNeuro ; 4(3)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28660246

RESUMEN

The GABA-B receptor is densely expressed throughout the brain and has been implicated in many CNS functions and disorders, including addiction, epilepsy, spasticity, schizophrenia, anxiety, cognitive deficits, and depression, as well as various aspects of nervous system development. How one GABA-B receptor is involved in so many aspects of CNS function remains unanswered. Activation of GABA-B receptors is normally thought to produce inhibitory responses in the nervous system, but puzzling contradictory responses exist. Here we report that in rat mitral cells of the olfactory bulb, GABA-B receptor activation inhibits both the persistent sodium current (INaP) and the sodium-activated potassium current (IKNa), which is coupled to it. We find that the primary effect of GABA-B activation is to inhibit INaP, which has the secondary effect of inhibiting IKNa because of its dependence on persistent sodium entry for activation. This can have either a net excitatory or inhibitory effect depending on the balance of INaP/IKNa currents in neurons. In the olfactory bulb, the cell bodies of mitral cells are densely packed with sodium-activated potassium channels. These channels produce a large IKNa which, if constitutively active, would shunt any synaptic potentials traversing the soma before reaching the spike initiation zone. However, GABA-B receptor activation might have the net effect of reducing the IKNa blocking effect, thus enhancing the effectiveness of synaptic potentials.


Asunto(s)
Canales de Potasio/metabolismo , Potasio/metabolismo , Receptores de GABA-B/metabolismo , Sodio/metabolismo , Animales , Cationes Monovalentes/metabolismo , Células Cultivadas , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Oocitos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Xenopus laevis
4.
FEBS Lett ; 589(16): 2146-54, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26143372

RESUMEN

Speract, a peptide from the egg jelly coat of certain sea urchin species, modulates sperm motility through a signaling pathway involving several ionic fluxes leading to pHi and [Ca²âº]i increases. [Ca²âº]i oscillations in the flagellum regulate its beating pattern modulating sperm swimming. Recent evidence showed the importance of pHi in controlling Ca²âº influx and chemotaxis. However, spatio-temporal characterization of the flagellar pHi increase triggered by speract, and its correlation to that of [Ca²âº]i is lacking. Here, we show for the first time in single sea urchin spermatozoa that the speract-induced flagellar pHi increase precedes and is independent of [Ca²âº]i increase. Our results support a leading role of pHi in modulating the Ca²âº signals that govern sperm swimming.


Asunto(s)
Señalización del Calcio , Citoplasma/metabolismo , Oligopéptidos/metabolismo , Erizos de Mar/fisiología , Cola del Espermatozoide/metabolismo , Espermatozoides/citología , Álcalis/farmacología , Cloruro de Amonio/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Citoplasma/efectos de los fármacos , Concentración de Iones de Hidrógeno , Procesamiento de Imagen Asistido por Computador , Cinética , Masculino , Análisis de la Célula Individual , Cabeza del Espermatozoide/metabolismo , Motilidad Espermática/efectos de los fármacos , Cola del Espermatozoide/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
5.
Biochem Biophys Res Commun ; 450(3): 1149-58, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24887564

RESUMEN

Intracellular pH (pHi) regulation is essential for cell function. Notably, several unique sperm ion transporters and enzymes whose elimination causes infertility are either pHi dependent or somehow related to pHi regulation. Amongst them are: CatSper, a Ca(2+) channel; Slo3, a K(+) channel; the sperm-specific Na(+)/H(+) exchanger and the soluble adenylyl cyclase. It is thus clear that pHi regulation is of the utmost importance for sperm physiology. This review briefly summarizes the key components involved in pHi regulation, their characteristics and participation in fundamental sperm functions such as motility, maturation and the acrosome reaction.


Asunto(s)
Espermatozoides/fisiología , Reacción Acrosómica/fisiología , Adenilil Ciclasas/metabolismo , Animales , Anhidrasas Carbónicas/metabolismo , Quimiotaxis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Líquido Intracelular/metabolismo , Canales Iónicos/metabolismo , Bombas Iónicas/metabolismo , Masculino , Modelos Biológicos , Erizos de Mar/fisiología , Transducción de Señal , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA