Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 532, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782969

RESUMEN

To study the validation process for sea surface salinity (SSS) we have generated one year (November 2011- October 2012) of simulated satellite and in situ "ground truth" data. This was done using the ECCO (Estimating the Circulation and Climate of the Oceans) 1/48° simulation, the highest resolution global ocean model currently available. The ground tracks of three satellites, Aquarius, SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) were extracted and used to sample the model with a gaussian weighting similar to that of the spaceborne sensor ground footprint. This produced simulated level 2 (L2) data. Simulated level 3 (L3) data were then produced by averaging L2 data onto a regular grid. The model was sampled to produce simulated Argo and tropical mooring SSS datasets. The Argo data were combined into a simulated gridded monthly 1° Argo product. The simulated data produced from this effort have been used to study sampling errors, matchups, subfootprint variability and the validation process for SSS at L2 and L3.

2.
Sci Rep ; 12(1): 6279, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428759

RESUMEN

Changes in the Earth's water cycle can be estimated by analyzing sea surface salinity. This variable reflects the balance between precipitation and evaporation over the ocean, since the upper layers of the ocean are the most sensitive to atmosphere-ocean interactions. In situ measurements lack spatial and temporal synopticity and are typically acquired at few meters below the surface. Satellite measurements, on the contrary, are synoptic, repetitive and acquired at the surface. Here we show that the satellite-derived sea surface salinity measurements evidence an intensification of the water cycle (the freshest waters become fresher and vice-versa) which is not observed at the in-situ near-surface salinity measurements. The largest positive differences between surface and near-surface salinity trends are located over regions characterized by a decrease in the mixed layer depth and the sea surface wind speed, and an increase in sea surface temperature, which is consistent with an increased stratification of the water column due to global warming. These results highlight the crucial importance of using satellites to unveil critical changes on ocean-atmosphere fluxes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA