Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38918041

RESUMEN

Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene NRG1 is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons. We found that deletion of Nrg1 impaired callosal axon development in vivo. Experiments in vitro and in vivo demonstrated that Nrg1 is cell-autonomously required for axonal outgrowth and that intracellular signaling of Nrg1 is sufficient to promote axonal development in cortical neurons and specifically in callosal axons. Furthermore, our data suggest that Nrg1 signaling regulates the expression of Growth Associated Protein 43, a key regulator of axonal growth. In conclusion, our study demonstrates that NRG1 is involved in the formation of interhemispheric callosal connections and provides a novel perspective on the relevance of NRG1 in excitatory neurons and in the etiology of schizophrenia.


Asunto(s)
Axones , Cuerpo Calloso , Neurregulina-1 , Transducción de Señal , Animales , Neurregulina-1/metabolismo , Neurregulina-1/genética , Cuerpo Calloso/metabolismo , Axones/metabolismo , Ratones , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/etiología , Esquizofrenia/patología , Ratones Noqueados , Neuronas/metabolismo , Proteína GAP-43/metabolismo , Proteína GAP-43/genética , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897791

RESUMEN

Brain damage is the major cause of permanent disability and it is particularly relevant in the elderly. While most studies focused on the immediate phase of neuronal loss upon injury, much less is known about the process of axonal regeneration after damage. The development of new refined preclinical models to investigate neuronal regeneration and the recovery of brain tissue upon injury is a major unmet challenge. Here, we present a novel experimental paradigm in mice that entails the (i) tracing of cortico-callosal connections, (ii) a mechanical lesion of the motor cortex, (iii) the stereological and histological analysis of the damaged tissue, and (iv) the functional characterization of motor deficits. By combining conventional microscopy with semi-automated 3D reconstruction, this approach allows the analysis of fine subcellular structures, such as axonal terminals, with the tridimensional overview of the connectivity and tissue integrity around the lesioned area. Since this 3D reconstruction is performed in serial sections, multiple labeling can be performed by combining diverse histological markers. We provide an example of how this methodology can be used to study cellular interactions. Namely, we show the correlation between active microglial cells and the perineuronal nets that envelop parvalbumin interneurons. In conclusion, this novel experimental paradigm will contribute to a better understanding of the molecular and cellular interactions underpinning the process of cortical regeneration upon brain damage.


Asunto(s)
Cuerpo Calloso , Corteza Motora , Animales , Cuerpo Calloso/ultraestructura , Interneuronas/fisiología , Ratones , Corteza Motora/fisiología , Neuronas/fisiología , Terminales Presinápticos
3.
J Vis Exp ; (173)2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34369923

RESUMEN

Neuronal loss is at the core of many neuropathologies, including stroke, Alzheimer's disease, and Parkinson's disease. Different methods were developed to study the process of neuronal survival upon cytotoxic stress. Most methods are based on biochemical approaches that do not allow single-cell resolution or involve complex and costly methodologies. Presented here is a versatile, inexpensive, and effective experimental paradigm to study neuronal survival. This method takes advantage of sparse fluorescent labeling of the neurons followed by live imaging and automated quantification. To this aim, the neurons are electroporated to express fluorescent markers and co-cultured with non-electroporated neurons to easily regulate cell density and increase survival. Sparse labeling by electroporation allows a simple and robust automated quantification. In addition, fluorescent labeling can be combined with the co-expression of a gene of interest to study specific molecular pathways. Here, we present a model of stroke as a neurotoxic model, namely, the oxygen-glucose deprivation (OGD) assay, which was performed in an affordable and robust homemade hypoxic chamber. Finally, two different workflows are described using IN Cell Analyzer 2200 or the open-source ImageJ for image analysis for semi-automatic data processing. This workflow can be easily adapted to different experimental models of toxicity and scaled up for high-throughput screening. In conclusion, the described protocol provides an approachable, affordable, and effective in vitro model of neurotoxicity, which can be suitable for testing the roles of specific genes and pathways in live imaging and for high-throughput drug screening.


Asunto(s)
Glucosa , Neuronas , Muerte Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo
4.
Neurobiol Dis ; 157: 105442, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34246770

RESUMEN

Neuregulin 1 (NRG1) and its receptor ERBB4 are schizophrenia (SZ) risk genes that control the development of both excitatory and inhibitory cortical circuits. Most studies focused on the characterization ErbB4 deficient mice. However, ErbB4 deletion concurrently perturbs the signaling of Nrg1 and Neuregulin 3 (Nrg3), another ligand expressed in the cortex. In addition, NRG1 polymorphisms linked to SZ locate mainly in non-coding regions and they may partially reduce Nrg1 expression. Here, to study the relevance of Nrg1 partial loss-of-function in cortical circuits we characterized a recently developed haploinsufficient mouse model of Nrg1 (Nrg1tm1Lex). These mice display SZ-like behavioral deficits. The cellular and molecular underpinnings of the behavioral deficits in Nrg1tm1Lex mice remain to be established. With multiple approaches including Magnetic Resonance Spectroscopy (MRS), electrophysiology, quantitative imaging and molecular analysis we found that Nrg1 haploinsufficiency impairs the inhibitory cortical circuits. We observed changes in the expression of molecules involved in GABAergic neurotransmission, decreased density of Vglut1 excitatory buttons onto Parvalbumin interneurons and decreased frequency of spontaneous inhibitory postsynaptic currents. Moreover, we found a decreased number of Parvalbumin positive interneurons in the cortex and altered expression of Calretinin. Interestingly, we failed to detect other alterations in excitatory neurons that were previously reported in ErbB4 null mice suggesting that the Nrg1 haploinsufficiency does not entirely phenocopies ErbB4 deletions. Altogether, this study suggests that Nrg1 haploinsufficiency primarily affects the cortical inhibitory circuits in the cortex and provides new insights into the structural and molecular synaptic impairment caused by NRG1 hypofunction in a preclinical model of SZ.


Asunto(s)
Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores/genética , Interneuronas/metabolismo , Inhibición Neural/genética , Neurregulina-1/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Calbindina 2/metabolismo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Neuronas GABAérgicas/patología , Expresión Génica , Haploinsuficiencia , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/fisiopatología , Interneuronas/patología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ratones , Parvalbúminas/metabolismo , ARN Mensajero/metabolismo , Receptor ErbB-4/genética , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...