Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Chem Mater ; 35(22): 9603-9612, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38047181

RESUMEN

Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.

3.
Langmuir ; 39(10): 3580-3588, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36862982

RESUMEN

Heterogeneous nucleation processes are involved in many important phenomena in nature, including devastating human diseases caused by amyloid structures or the harmful frost formed on fruits. However, understanding them is challenging due to the difficulties of characterizing the initial stages of the process occurring at the interface between the nucleation medium and the substrate surfaces. This work implements a model system based on gold nanoparticles to investigate the effect of particle surface chemistry and substrate properties on heterogeneous nucleation processes. Using widely available techniques such as UV-vis-NIR spectroscopy and light microscopy, gold nanoparticle-based superstructure formation was studied in the presence of substrates with different hydrophilicity and electrostatic charges. The results were evaluated on grounds of classical nucleation theory (CNT) to reveal kinetic and thermodynamic contributions of the heterogeneous nucleation process. In contrast to nucleation from ions, the kinetic contributions toward nucleation turned out to be larger than the thermodynamic contributions for the nanoparticle building blocks. Electrostatic interactions between substrates and nanoparticles with opposite charges were crucial to enhancing the nucleation rates and decreasing the nucleation barrier of superstructure formation. Thereby, the described strategy is demonstrated advantageous for characterizing physicochemical aspects of heterogeneous nucleation processes in a simple and accessible manner, which could be potentially explored to study more complex nucleation phenomena.

4.
Adv Mater ; 35(1): e2208299, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36239273

RESUMEN

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.


Asunto(s)
Nanopartículas , Nanotubos , Cisteína/química , Rotación Óptica , Oro/química , Nanotubos/química , Nanopartículas/química
5.
Chemphyschem ; 24(2): e202200480, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36121760

RESUMEN

Conventional nanocrystal (NC) growth mechanisms have overwhelmingly focused on the final exposed facets to explain shape evolution. However, how the final facets are formed from the initial nuclei or seeds, has not been specifically interrogated. In this concept paper, we would like to concentrate on this specific topic, and introduce the symmetry based kinematic theory (SBKT) to explain the formation and evolution of crystal facets. It is a crystallographic theory based on the classical crystal growth concepts developed to illustrate the shape evolution during the NC growth. The most important principles connecting the basic NC growth processes and morphology evolution are the preferential growth directions and the properties of kinematic waves. On the contrary, the final facets are just indications of how the crystal growth terminates, and their formation and evolution rely on the NC growth processes: surface nucleation and layer advancement. Accordingly, the SBKT could even be applied to situations where non-faceted NCs such as spheres are formed.


Asunto(s)
Nanopartículas , Fenómenos Biomecánicos , Nanopartículas/química
6.
Acc Chem Res ; 55(12): 1599-1608, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35679581

RESUMEN

Biominerals are unique materials found in many living organisms that often display outstanding functionalities attributed to their mesocrystalline structure. Mesocrystals are nanocrystal superstructures with mutual crystallographic alignment of the building units. One could thus imagine these optimized evolutionary systems as archetypes to fabricate advanced materials. The main advantage of such systems relies on their ability to combine the features of the nanocrystals with those of single crystalline microscopic structures, yielding assemblies with directional, enhanced, and potentially emergent properties. Moreover, fueled by the promises of multifunctional materials with unprecedented and tunable properties, the rational design of mesocrystals assembled from two distinct colloidal nanocrystal ensembles has become a recent focus of research. However, the combination of dissimilar nanocrystals into ordered binary superstructures is still a major scientific challenge due to the nature of the coassembly process.We focus this Account on the growth of tridimensional (3D) binary mesocrystals and the understanding of the self-assembly of two colloidal nanocrystal ensembles with the ultimate goal to serve as a basis for more rational mesocrystal syntheses in the future. The formation of mesocrystals demands nanocrystals with defined surface faceting, the primary factor influencing their oriented self-assembly. Notably, such a process cannot be successfully afforded without functionalized nanocrystals with high and, in many cases, tunable colloidal stability. Besides, the nature and solvation degree of the surface ligand shell influences the effective shape of the nanocrystals and the kinetics of self-assembly. If the assembly is triggered by reducing the colloidal stability with nonsolvents, 3D single-component mesocrystals are often grown. Here, the different magnitude of the van der Waals attraction forces between nanocrystals with differing compositions, dimensions, and morphologies generally favors the segregation and growth of single component mesocrystals. This phenomenon was illustrated during the successful preparation of 3D binary mesocrystals composed of iron oxide and platinum nanocubes. Although the building blocks possessed comparable sizes and were stabilized by similar ligands, the amount of the second component could only be arbitrarily tuned up to some extent, even when the assembly conditions were rationally optimized to achieve 3D binary mesocrystals. Only a small amount of it was effectively incorporated into the matrix of the initial mesocrystal. The 3D binary mesocrystal growth process demands a delicate control over the size, shape, and surface chemistry of the nanocrystals, the solvent nature, and the self-assembly process. Hence, the improvement of our ability to control the synthesis of 3D binary mesocrystalline materials is critical to exploit their potential toward technological applications in catalysis, energy storage, or structural materials.


Asunto(s)
Nanopartículas , Nanopartículas/química
7.
Chem Commun (Camb) ; 58(53): 7364-7367, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35621065

RESUMEN

Liquid crystalline (LC) dimers formed helical nanofilaments depending on the parity of the alkyl linker, revealing an unusual odd-even effect. Molecular dynamics simulations were used to investigate the observed tendency. Elongation of the linker translates to an increase of the pitch of the helices, which allows achieving tuneable helical assemblies of Au nanoparticles doped to the LC matrix. The impact of the tuneable pitch of helices on the chiral optical properties of composites was investigated with full-wave simulations based on the T-matrix method.


Asunto(s)
Cristales Líquidos , Nanopartículas del Metal , Oro , Cristales Líquidos/química , Simulación de Dinámica Molecular , Polímeros/química
8.
ACS Mater Lett ; 4(4): 642-649, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35400146

RESUMEN

Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.

9.
Faraday Discuss ; 235(0): 132-147, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35380134

RESUMEN

In this study, we analysed for the first time heterogeneous nucleation with anisotropic nanoparticles as a model system for non-spherical building units on the nanoscale. Gold nanorods were synthesised and assembled to investigate the phenomenon of heterogeneous nucleation. To determine the influence of the particle shape on heterogeneous nucleation, we utilised gold nanorods with varying aspect ratios, ranging from 3.00 and 2.25 to 1.75, while keeping the surface chemistry constant. First, the nucleation of the gold nanorod assemblies in solution and the process kinetics were analyzed with UV-vis-NIR spectroscopy followed by a microscopic examination of the gold nanorod-based superstructures formed heterogeneously on substrates. Here, positively charged cetyltrimethylammonium bromide (CTAB)-functionalized gold nanorods and negatively charged polystyrene sulfonate (PSS) functionalized substrates ensured the directed heterogeneous nucleation on the substrates. A combination of light microscopy with simultaneous UV-vis-NIR spectroscopy allowed us to observe the gold nanorod-based superstructure formation on the substrates in situ and to determine the nucleation rates of the process. We analysed the resulting data with the classical nucleation theory, which revealed a dominating kinetic term and a negligible thermodynamic term in contrast to ionic systems like calcium carbonate. Our studies consistently exhibit an influence of the aspect ratio on the nucleation behaviour resulting in faster nucleation of superstructures as the aspect ratio decreases. Hence our studies show unprecedented insight into the influence of particle anisotropy on the nucleation and growth of nanorod-based superstructures and reveal significant differences in the nucleation of nanoparticle building units compared to the nucleation of atoms or molecules as building units.

10.
Angew Chem Int Ed Engl ; 61(20): e202200753, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35238123

RESUMEN

The growth of crystalline nanoparticles (NPs) generally involves three processes: nucleation, growth, and shape evolution. Among them, the shape evolution is less understood, despite the importance of morphology for NP properties. Here, we propose a symmetry-based kinematic theory (SBKT) based on classical growth theories to illustrate the process. Based on the crystal lattice, nucleus (or seed) symmetry, and the preferential growth directions under the experimental conditions, the SBKT can illustrate the growth trajectories. The theory accommodates the conventional criteria of the major existing theories for crystal growth and provides tools to better understand the symmetry-breaking process during the growth of anisotropic structures. Furthermore, complex dendritic growth is theoretically and experimentally demonstrated. Thus, it provides a framework to explain the shape evolution, and extends the morphogenesis prediction to cases, which cannot be treated by other theories.

11.
Nanomaterials (Basel) ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071534

RESUMEN

Analytical ultracentrifugation (AUC) is a powerful technique to observe colloidal nanocrystals (NCs) directly in solution and obtain critical information about their physical-chemical properties. Nevertheless, a more comprehensive implementation of AUC for the characterisation of such a class of crystalline colloids has been traditionally impaired by the requirement of having a priori knowledge of the complex, multilayered structure formed by NC in solution. This includes the nature (density and mass) of the surface ligands (SLs) that provide NC colloidal stability and the shell of solvent molecules formed on it. Herein, we propose a methodology to determine the NCs size by using SLs with a density equal to that of the solvent. Thereby, the buoyancy force of the SL shell is neutral, and the density of the NCs is sufficient a priori knowledge to calculate their related mass and size distributions. The simplicity and reliability of the method are evaluated with cetyltrimethylammonium bromide (CTAB) stabilized spherical gold NCs (AuNCs) of dimensions ranging from 1 to 17 nm. The proposed method has great potential to be transferred to any non-crystalline and crystalline colloids of different nature and composition, which have a density that is equal to the bulk and can be stabilized by SLs having a density that matches that of the solvent.

12.
Microsc Microanal ; : 1-5, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34169809

RESUMEN

Composite, helical nanostructures formed using cooperative interactions of liquid crystals and Au nanoparticles were studied using a scanning transmission electron microscopy (STEM) mode. The investigated helical assemblies exhibit long-range hierarchical order across length scales, as a result of the crystallization (freezing) directed growth mechanism of nanoparticle-coated twisted nanoribbons and their ability to form organized bundles. Here, STEM methods were used to reproduce the 3D structure of the Au nanoparticle double helix.

13.
Adv Colloid Interface Sci ; 289: 102366, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33540289

RESUMEN

Colloidal nanoparticles (NPs) have attracted significant attention due to their unique physicochemical properties suitable for diagnosing and treating different human diseases. Nevertheless, the successful implementation of NPs in medicine demands a proper understanding of their interactions with the different proteins found in biological fluids. Once introduced into the body, NPs are covered by a protein corona (PC) that determines the biological behavior of the NPs. The formation of the PC can eventually favor the rapid clearance of the NPs from the body before fulfilling the desired objective or lead to increased cytotoxicity. The PC nature varies as a function of the different repulsive and attractive forces that govern the NP-protein interaction and their colloidal stability. This review focuses on the phenomenon of PC formation on NPs from a physicochemical perspective, aiming to provide a general overview of this critical process. Main issues related to NP toxicity and clearance from the body as a result of protein adsorption are covered, including the most promising strategies to control PC formation and, thereby, ensure the successful application of NPs in nanomedicine.


Asunto(s)
Nanopartículas , Corona de Proteínas , Adsorción , Humanos , Nanomedicina , Proteínas
14.
Chem Commun (Camb) ; 56(92): 14439-14442, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33146182

RESUMEN

The citrate-assisted growth of nickel hexacyanoferrate (NiHCF) nanocubes was investigated. Control over the complexation of Ni2+ ions with citrate at different temperatures enabled fine tuning of the nanocrystal (NC) dimensions and their self-assembly into mesocrystals. Our results introduce new concepts towards the synthesis of NiHCF NCs, potentially applicable to other members of the Prussian blue analogues family.

15.
Chem Commun (Camb) ; 56(85): 13001-13004, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-32996921

RESUMEN

Self-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.

16.
ACS Nano ; 14(10): 12558-12570, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32790321

RESUMEN

Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.

17.
J Phys Chem Lett ; 11(13): 5108-5114, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32515961

RESUMEN

Metallic hollow nanoparticles exhibit interesting optical properties that can be controlled by geometrical parameters. Irradiation with femtosecond laser pulses has emerged recently as a valuable tool for reshaping and size modification of plasmonic metal nanoparticles, thereby enabling the synthesis of nanostructures with unique morphologies. In this Letter, we use classical molecular dynamics simulations to investigate the solid-to-hollow conversion of gold nanoparticles upon femtosecond laser irradiation. Here, we suggest an efficient method for producing hollow nanoparticles under certain specific conditions, namely that the particles should be heated to a maximum temperature between 2500 and 3500 K, followed by a fast quenching to room temperature, with cooling rates lower than 120 ps. Therefore, we describe the experimental conditions for efficiently producing hollow nanoparticles, opening a broad range of possibilities for applications in key areas, such as energy storage and catalysis.

18.
Science ; 368(6498): 1472-1477, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32587018

RESUMEN

Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants. Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness. Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~0.20). Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum. The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods. This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity.

19.
J Phys Chem A ; 124(27): 5657-5663, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32275434

RESUMEN

Nucleation phenomena play an important role in our world, and understanding them is of major interest. However, we lack analytical methods with the sufficient temporal and spatial resolution to analyze nucleation processes. In this work we used CTAB-stabilized gold nanocubes as a model system for nucleation, meaning the nanoparticles act like ions or atoms and built up larger superstructures comparable to normal nucleation phenomena. Thereby we analyzed the heterogeneous nucleation of the gold nanocubes on hydrophobized and negatively charged mica surfaces with a combination of UV-vis-NIR spectroscopy and light microscopy. With the plasmon resonance of the gold nanocubes we gained valuable information about the early nucleation of the particles and their concentration in solution via UV-vis-NIR spectroscopy. The combination with a light microscope enabled the simultaneous detection of nucleated species on the surfaces and opened the possibility to analyze the kinetics of the heterogeneous nucleation process. With this, we were able to determine the nucleation rates. While the hydrophobized surfaces did not influence the nucleation of the gold nanocubes, the negatively charged surfaces greatly promoted the nucleation. Thereby, we could demonstrate that the combination of simple and commonly available light microscopy and optical spectroscopies in general is a suitable and easy strategy to analyze heterogeneous nucleation processes directly in solution on a relevant statistical basis.

20.
Sci Rep ; 10(1): 5921, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246058

RESUMEN

In this work, we investigated experimentally and theoretically the plasmonic Fano resonances (FRs) exhibited by core-shell nanorods composed of a gold core and a silver shell (Au@Ag NRs). The colloidal synthesis of these Au@Ag NRs produces nanostructures with rich plasmonic features, of which two different FRs are particularly interesting. The FR with spectral location at higher energies (3.7 eV) originates from the interaction between a plasmonic mode of the nanoparticle and the interband transitions of Au. In contrast, the tunable FR at lower energies (2.92-2.75 eV) is ascribed to the interaction between the dominant transversal LSPR mode of the Ag shell and the transversal plasmon mode of the Au@Ag nanostructure. The unique symmetrical morphology and FRs of these Au@Ag NRs make them promising candidates for plasmonic sensors and metamaterials components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...