Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 12(2): e0259423, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38230926

RESUMEN

Fungal infections are a growing global health concern due to the limited number of available antifungal therapies as well as the emergence of fungi that are resistant to first-line antimicrobials, particularly azoles and echinocandins. Development of novel, selective antifungal therapies is challenging due to similarities between fungal and mammalian cells. An attractive source of potential antifungal treatments is provided by ecological niches co-inhabited by bacteria, fungi, and multicellular organisms, where complex relationships between multiple organisms have resulted in evolution of a wide variety of selective antimicrobials. Here, we characterized several analogs of one such natural compound, collismycin A. We show that NR-6226C has antifungal activity against several pathogenic Candida species, including C. albicans and C. glabrata, whereas it only has little toxicity against mammalian cells. Mechanistically, NR-6226C selectively chelates iron, which is a limiting factor for pathogenic fungi during infection. As a result, NR-6226C treatment causes severe mitochondrial dysfunction, leading to formation of reactive oxygen species, metabolic reprogramming, and a severe reduction in ATP levels. Using an in vivo model for fungal infections, we show that NR-6226C significantly increases survival of Candida-infected Galleria mellonella larvae. Finally, our data indicate that NR-6226C synergizes strongly with fluconazole in inhibition of C. albicans. Taken together, NR-6226C is a promising antifungal compound that acts by chelating iron and disrupting mitochondrial functions.IMPORTANCEDrug-resistant fungal infections are an emerging global threat, and pan-resistance to current antifungal therapies is an increasing problem. Clearly, there is a need for new antifungal drugs. In this study, we characterized a novel antifungal agent, the collismycin analog NR-6226C. NR-6226C has a favorable toxicity profile for human cells, which is essential for further clinical development. We unraveled the mechanism of action of NR-6226C and found that it disrupts iron homeostasis and thereby depletes fungal cells of energy. Importantly, NR-6226C strongly potentiates the antifungal activity of fluconazole, thereby providing inroads for combination therapy that may reduce or prevent azole resistance. Thus, NR-6226C is a promising compound for further development into antifungal treatment.


Asunto(s)
Antiinfecciosos , Micosis , Animales , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Hierro , Candida , Micosis/microbiología , Candida albicans , Antiinfecciosos/farmacología , Azoles/farmacología , Candida glabrata , Quelantes del Hierro/farmacología , Farmacorresistencia Fúngica , Pruebas de Sensibilidad Microbiana , Mamíferos
2.
Chemistry ; 29(57): e202302892, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37713100

RESUMEN

Invited for the cover of this issue is the group of Vicente del Amo, Alejandro Presa Soto and Joaquín García-Álvarez (QuimSinSos Group) at the University of Oviedo. The image depicts the use of the FeIII -based deep eutectic mixture [FeCl3 ⋅6 H2 O/Gly (3:1)] (Gly = glycerol) as both promoter and solvent for the straightforward and selective hydration of alkynes, working under mild (45 °C), bench-type reaction conditions (air) and in the absence of ligands, co-catalysts or co-solvents. Read the full text of the article at 10.1002/chem.202301736.

3.
Chemistry ; 29(57): e202301736, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37439586

RESUMEN

An efficient, simple and general protocol for the selective hydration of terminal alkynes into the corresponding methyl ketones has been developed by using a cheap, easy-to-synthesise and sustainable FeIII -based eutectic mixture [FeCl3 ⋅ 6H2 O/Gly (3 : 1)] as both promoter and solvent for the hydration reaction, working: i) under mild (45 °C) and bench-type reaction conditions (air); and ii) in the absence of ligands, co-catalysts, co-solvents or toxic, non-abundant and expensive noble transition metals (Au, Ru, Pd). When the final methyl ketones are solid/insoluble in the eutectic mixture, the hydration reaction takes place in 30 min, and the obtained methyl ketones can be isolated by simply decanting the liquid FeIII -DES, allowing the direct isolation of the desired ketones without VOC solvents. By using this straightforward and simple isolation protocol, we have been able to recycle the FeIII -based eutectic mixture system up to eight consecutive times. Furthermore, the FeIII -eutectic mixture is able to promote the selective and efficient formal oxidation of internal alkynes into 1,2-diketones, with the possibility of recycling this system up to three consecutive times. Preliminary investigations into a possible mechanism for the oxidation of the internal alkynes seem to indicate that it proceeds through the formation of the corresponding methyl ketones and α-chloroketones.

4.
Org Biomol Chem ; 21(21): 4414-4421, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000523

RESUMEN

The highly efficient biodeoximation of aromatic ketoximes, promoted by the enzymatic oxidative system laccase/TEMPO/O2, has been successfully assembled with the fast and chemoselective addition of highly-polar s-block organometallic reagents (RLi/RMgX) en route to highly-substituted tertiary alcohols. By using this hybrid one-pot tandem protocol, tertiary alcohols have been selectively synthesized in good yields and under mild and bench-type reaction conditions (room temperature, the absence of a protecting atmosphere and aqueous media, which are non-typical conditions for polar organometallic reagents). The overall hybrid one-pot tandem transformation amalgamates two distant organic synthetic tools (RLi/RMgX reagents and enzymes) without the need for any tedious and energy/time-consuming intermediate isolation/purification steps.

5.
ChemSusChem ; 15(9): e202101313, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34409744

RESUMEN

A series of optically active ß-hydroxy sulfones has been obtained through an oxosulfonylation-stereoselective reduction sequence in aqueous medium. Firstly, ß-keto sulfones were synthesized from arylacetylenes and sodium sulfinates to subsequently develop the carbonyl reduction in a highly selective fashion using alcohol dehydrogenases as biocatalysts. Optimization of the chemical oxosulfonylation reaction was investigated, finding inexpensive iron(III) chloride hexahydrate (FeCl3 ⋅ 6H2 O) as the catalyst of choice. The selection of isopropanol in the alcohol-water media resulted in high compatibility with the enzymatic process for enzyme cofactor recycling purposes, providing a straightforward access to both (R)- and (S)-ß-hydroxy sulfones. The practical usefulness of this transformation was illustrated by describing the synthesis of a chiral intermediate of Apremilast. Interestingly, the development of a chemoenzymatic cascade approach avoided the isolation of ß-keto sulfone intermediates, which allowed the preparation of chiral ß-hydroxy sulfones in high conversion values (83-94 %) and excellent optical purities (94 to >99 % ee).


Asunto(s)
Compuestos Férricos , Sulfonas , Alcohol Deshidrogenasa , Alcoholes , Catálisis , Estereoisomerismo
6.
Chem Commun (Camb) ; 57(99): 13534-13537, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34850798

RESUMEN

The one-pot/two-step combination of enzymes and polar organometallic chemistry in aqueous media is for the first time presented as a proof-of-concept study. The unprecedented combination of the catalytic oxidation of secondary alcohols by the system laccase/TEMPO with the ultrafast addition (3 s reaction time) of polar organometallic reagents (RLi/RMgX) to the in situ formed ketones, run under air at room temperature, allows the straightforward and chemoselective synthesis of tertiary alcohols with broad substrate scope and excellent conversions (up to 96%).

7.
Bioorg Chem ; 112: 104859, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33836453

RESUMEN

A novel series of enantiopure naphthalimide-cycloalkanediamine conjugates were designed, synthetized and evaluated for in vitro cytotoxicity against human colon adenocarcinoma (LoVo), human lung adenocarcinoma (A549), human cervical carcinoma (Hela) and human promyelocytic leukemia cell lines (HL-60). The cytotoxicity of the compounds was highly dependent on size and relative stereochemistry of the cycloalkyl ring as well as length of the spacer. By contrast, any kind of enantioselection was observed for each pair of enantiomers. Flow cytometric analysis indicated that compounds 22 and 23 could effectively induce G2/M arrest in the four previous cell lines despite a mild apoptotic effect.


Asunto(s)
Antineoplásicos/farmacología , Cicloparafinas/farmacología , Diaminas/farmacología , Diseño de Fármacos , Naftalimidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Cicloparafinas/química , Diaminas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Naftalimidas/química , Relación Estructura-Actividad
8.
Org Biomol Chem ; 19(8): 1773-1779, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33543179

RESUMEN

An efficient and selective N-functionalization of amides is first reported via a CuI-catalyzed Goldberg-type C-N coupling reaction between aryl iodides and primary/secondary amides run either in Deep Eutectic Solvents (DESs) or water as sustainable reaction media, under mild and bench-type reaction conditions (absence of protecting atmosphere). Higher activities were observed in an aqueous medium, though the employment of DESs expanded and improved the scope of the reaction to include also aliphatic amides. Additional valuable features of the reported protocol include: (i) the possibility to scale up the reaction without any erosion of the yield/reaction time; (ii) the recyclability of both the catalyst and the eutectic solvent up to 4 consecutive runs; and (iii) the feasibility of the proposed catalytic system for the synthesis of biologically active molecules.

9.
Chembiochem ; 22(7): 1232-1242, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33242357

RESUMEN

Amine transaminases (ATAs) are used to synthesize enantiomerically pure amines, which are building blocks for pharmaceuticals and agrochemicals. R-selective ATAs belong to the fold type IV PLP-dependent enzymes, and different sequence-, structure- and substrate scope-based features have been identified in the past decade. However, our knowledge is still restricted due to the limited number of characterized (R)-ATAs, with additional bias towards fungal origin. We aimed to expand the toolbox of (R)-ATAs and contribute to the understanding of this enzyme subfamily. We identified and characterized four new (R)-ATAs. The ATA from Exophiala sideris contains a motif characteristic for d-ATAs, which was previously believed to be a disqualifying factor for (R)-ATA activity. The crystal structure of the ATA from Shinella is the first from a Gram-negative bacterium. The ATAs from Pseudonocardia acaciae and Tetrasphaera japonica are the first characterized (R)-ATAs with a shortened/missing N-terminal helix. The active-site charges vary significantly between the new and known ATAs, correlating with their diverging substrate scope.


Asunto(s)
Transaminasas/metabolismo , Actinobacteria/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Escherichia coli/metabolismo , Exophiala/enzimología , Simulación del Acoplamiento Molecular , Rhizobiaceae/enzimología , Alineación de Secuencia , Estereoisomerismo , Especificidad por Sustrato , Transaminasas/química , Transaminasas/genética
10.
Chem Commun (Camb) ; 56(96): 15165-15168, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33215181

RESUMEN

The Meyer-Schuster rearrangement of propargylic alcohols into α,ß-unsaturated carbonyl compounds has been revisited by setting up an atom-economic process catalyzed by a deep eutectic solvent FeCl3·6H2O/glycerol. Isomerizations take place smoothly, at room temperature, under air and with short reaction times. The unique solubilizing properties of the eutectic mixture enabled the use of a substrate concentration up to 1.0 M with the medium being recycled up to ten runs without any loss of catalytic activity.

11.
Chem Commun (Camb) ; 56(63): 8932-8935, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32638745

RESUMEN

A tandem protocol to access tertiary alcohols has been developed which combines the organocatalytic oxidation of secondary alcohols to ketones followed by their chemoselective addition by several RLi reagents. Reactions take place at room temperature, under air and in aqueous solutions, a trio of conditions that are typically forbidden in polar organometallic chemistry.

12.
ChemSusChem ; 13(14): 3583-3588, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32445433

RESUMEN

Highly polarized organometallic compounds of s-block elements are added smoothly to chiral N-tert-butanesulfinyl imines in the biodegradable d-sorbitol/choline chloride eutectic mixture, thereby granting access to enantioenriched primary amines after quantitatively removing the sulfinyl group. The practicality of the method is further highlighted by proceeding at ambient temperature and under air, with very short reaction times (2 min), enabling the preparation of diastereoisomeric sulfinamides in very good yields (74-98 %) and with a broad substrate scope, and the possibility of scaling up the process. The method is demonstrated in the asymmetric syntheses of both the chiral amine side-chain of (R,R)-Formoterol (96 % ee) and the pharmaceutically relevant (R)-Cinacalcet (98 % ee).

13.
Front Chem ; 8: 139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211377

RESUMEN

The self-assembly of styrene-type olefins into the corresponding stilbenes was conveniently performed in the Deep Eutectic Solvent (DES) mixture 1ChCl/2Gly under air and in the absence of hazardous organic co-solvents using a one-pot chemo-biocatalytic route. Here, an enzymatic decarboxylation of p-hydroxycinnamic acids sequentially followed by a ruthenium-catalyzed metathesis of olefins has been investigated in DES. Moreover, and to extend the design of chemoenzymatic processes in DESs, we also coupled the aforementioned enzymatic decarboxylation reaction to now concomitant Pd-catalyzed Heck-type C-C coupling to produce biaryl derivatives under environmentally friendly reaction conditions.

14.
Adv Synth Catal ; 360(11): 2157-2165, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29937706

RESUMEN

Several chemoenzymatic routes have been explored for the preparation of cinacalcet, a calcimimetic agent. Transaminases (TAs) and ketoreductases (KREDs) turned out to be useful biocatalysts for the preparation of key optically active precursors. Thus, the asymmetric amination of 1-acetonaphthone yielded an enantiopure (R)-amine, which can be alkylated in one step to yield cinacalcet. Alternatively, the bioreduction of the same ketone resulted in an enantiopure (S)-alcohol, which was easily converted into the previous (R)-amine. In addition, the reduction was efficiently performed with the KRED and its cofactor co-immobilized on the same porous surface. This self-sufficient heterogeneous biocatalyst presented an accumulated total turnover number (TTN) for the cofactor of 675 after 5 consecutive operational cycles. Finally, in a preparative scale synthesis the TA-based approach was performed in aqueous medium and led to enantiopure cinacalcet in two steps and 50% overall yield.

15.
Front Microbiol ; 9: 252, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29503641

RESUMEN

Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structural proteins, two for regulatory proteins and one for a hypothetical protein. Herein, we have characterized the post-piperideine ring biosynthesis steps of argimycins P through the generation of mutants in arp genes, the identification and characterization of compounds accumulated by those mutants, and cross-feeding experiments between mutants. Based in these results, a biosynthesis pathway is proposed assigning roles to every arp gene product. The regulation of the arp cluster is also addressed by inactivating/overexpressing the positive SARP-like arpRI and the negative TetR-like arpRII transcriptional regulators and determining the effect on argimycins P production, and through gene expression analyses (reverse transcription PCR and quantitative real-time PCR) of arp genes in regulatory mutants in comparison to the wild type strain. These findings will contribute to deepen the knowledge on the biosynthesis of piperidine-containing polyketides and provide tools that can be used to generate new analogs by genetic engineering and/or biocatalysis.

17.
Chemistry ; 23(66): 16843-16852, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-28940802

RESUMEN

The development of cell-free and self-sufficient biocatalytic systems represents an emerging approach to address more complex synthetic schemes under nonphysiological conditions. Herein, we report the development of a self-sufficient heterogeneous biocatalyst for the synthesis of chiral alcohols without the need to add an exogenous cofactor. In this work, an NADPH-dependent ketoreductase was primarily stabilized and further co-immobilized with NADPH to catalyze asymmetric reductions without the addition of an exogenous cofactor. As a result, the immobilized cofactor is accessible, and thus, it is recycled inside the porous structure without diffusing out into the bulk, as demonstrated by single-particle in operando studies. This self-sufficient heterogeneous biocatalyst was used and recycled for the asymmetric reduction of eleven carbonyl compounds in a batch reactor without the addition of exogenous NADPH to achieve the corresponding alcohols in 100 % yield and >99 % ee; this high performance was maintained over five consecutive reaction cycles. Likewise, the self-sufficient heterogeneous biocatalyst was integrated into a plug flow reactor for the continuous synthesis of one model secondary alcohol, which gave rise to a space-time yield of 97-112 g L-1 day-1 ; additionally, the immobilized cofactor accumulated a total turnover number of 1076 for 120 h. This is one of the few examples of the successful implementation of continuous reactions in aqueous media catalyzed by cell-free and immobilized systems that integrate both enzymes and cofactors into the solid phase.


Asunto(s)
Cetonas/química , NADP/química , Oxidorreductasas/metabolismo , Biocatálisis , Estabilidad de Medicamentos , Cinética , Oxidación-Reducción , Estereoisomerismo , Temperatura
18.
Org Lett ; 18(14): 3366-9, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27357900

RESUMEN

A stereoselective bioreduction of 2-oxocycloalkanecarbonitriles was concurrently coupled to a whole cell-catalyzed nitrile hydrolysis in one-pot. The first step, mediated by ketoreductases, involved a dynamic reductive kinetic resolution, which led to 2-hydroxycycloalkanenitriles in very high enantio- and diastereomeric ratios. Then, the simultaneous exposure to nitrile hydratase and amidase from whole cells of Rhodococcus rhodochrous provided the corresponding 2-hydroxycycloalkanecarboxylic acids with excellent overall yield and optical purity for the all-enzymatic cascade.

19.
Angew Chem Int Ed Engl ; 55(30): 8691-5, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27258838

RESUMEN

The ruthenium-catalyzed redox isomerization of allylic alcohols was successfully coupled with the enantioselective enzymatic ketone reduction (mediated by KREDs) in a concurrent process in aqueous medium. The overall transformation, formally the asymmetric reduction of allylic alcohols, took place with excellent conversions and enantioselectivities, under mild reaction conditions, employing commercially and readily available catalytic systems, and without external coenzymes or cofactors. Optimization resulted in a multistep approach and a genuine cascade reaction where the metal catalyst and biocatalyst coexist from the beginning.

20.
Clin Cancer Res ; 22(16): 4105-18, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26979396

RESUMEN

PURPOSE: The goal of this study was to identify second-generation mithramycin analogues that better target the EWS-FLI1 transcription factor for Ewing sarcoma. We previously established mithramycin as an EWS-FLI1 inhibitor, but the compound's toxicity prevented its use at effective concentrations in patients. EXPERIMENTAL DESIGN: We screened a panel of mithralogs to establish their ability to inhibit EWS-FLI1 in Ewing sarcoma. We compared the IC50 with the MTD established in mice to determine the relationship between efficacy and toxicity. We confirmed the suppression of EWS-FLI1 at the promoter, mRNA, gene signature, and protein levels. We established an improved therapeutic window by using time-lapse microscopy to model the effects on cellular proliferation in Ewing sarcoma cells relative to HepG2 control cells. Finally, we established an improved therapeutic window using a xenograft model of Ewing sarcoma. RESULTS: EC-8105 was found to be the most potent analogue and was able to suppress EWS-FLI1 activity at concentrations nontoxic to other cell types. EC-8042 was substantially less toxic than mithramycin in multiple species but maintained suppression of EWS-FLI1 at similar concentrations. Both compounds markedly suppressed Ewing sarcoma xenograft growth and inhibited EWS-FLI1 in vivo CONCLUSIONS: These results provide a basis for the continued development of EC-8042 and EC-8105 as EWS-FLI1 inhibitors for the clinic. Clin Cancer Res; 22(16); 4105-18. ©2016 AACR.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/metabolismo , Plicamicina/farmacología , Proteína Proto-Oncogénica c-fli-1/antagonistas & inhibidores , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/antagonistas & inhibidores , Proteína EWS de Unión a ARN/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Terapia Molecular Dirigida , Regiones Promotoras Genéticas , Sarcoma de Ewing/tratamiento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/mortalidad , Factores de Transcripción , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...