Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
2.
Conserv Biol ; : e14224, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111961

RESUMEN

Seabirds interact with fishing vessels to consume fishing discards and baits, sometimes resulting in incidental capture (bycatch) and the death of the bird, which has clear conservation implications. To understand seabird-fishery interactions at large spatiotemporal scales, researchers are increasing their use of simultaneous seabird and fishing vessel tracking. However, vessel tracking data can contain gaps due to technical problems, illicit manipulation, or lack of adoption of tracking monitoring systems. These gaps might lead to underestimating the fishing effort and bycatch rates and jeopardize the effectiveness of marine conservation. We deployed bird-borne radar detector tags capable of recording radar signals from vessels. We placed tags on 88 shearwaters (Calonectris diomedea, Calonectris borealis, and Calonectris edwardsii) that forage in the northwestern Mediterranean Sea and the Canary Current Large Marine Ecosystem. We modeled vessel radar detections registered by the tags in relation to gridded automatic identification system (AIS) vessel tracking data to examine the spatiotemporal dynamics of seabird-vessel interactions and identify unreported fishing activity areas. Our models showed a moderate fit (area under the curve >0.7) to vessel tracking data, indicating a strong association of shearwaters to fishing vessels in major fishing grounds. Although in high-marine-traffic regions, radar detections were also driven by nonfishing vessels. The tags registered the presence of potential unregulated and unreported fishing vessels in West African waters, where merchant shipping is unusual but fishing activity is intense. Overall, bird-borne radar detectors showed areas and periods when the association of seabirds with legal and illegal fishing vessels was high. Bird-borne radar detectors could improve the focus of conservation efforts.


Uso de radares en aves para analizar las interacciones de las pardelas con las pesquerías legales e ilegales Resumen Las aves marinas interactúan con los barcos pesqueros para consumir los cebos y lo que descartan, lo que a veces resulta en la captura accesoria y la muerte del ave, por lo que esto tiene implicaciones claras para la conservación. Los investigadores cada vez usan más el rastreo simultáneo de las aves marinas y los barcos pesqueros para comprender las interacciones aves marinas ­ pesquerías a gran escala espaciotemporal. Sin embargo, los datos del rastreo de barcos pueden incluir vacíos por problemas técnicos, manipulación ilícita o porque no adoptan sistemas para monitorear el rastreo. Estos vacíos pueden llevar a subestimar el esfuerzo de pesca y las tasas de captura accesoria y a comprometer la efectividad de la conservación marina. Desplegamos marcas detectoras de radar encima de aves capaces de registrar las señales de radar de los barcos. Colocamos estas marcas en 88 pardelas (Calonectris diomedea, C. borealis, y C. edwardsii) que forrajean en el noroeste del Mar Mediterráneo y el Gran Ecosistema Marino de Canarias. Modelamos las detecciones del radar de los barcos registradas por las marcas en relación con los datos reticulados de rastreo de barcos del sistema de identificación automático (AIS) para analizar las dinámicas espaciotemporales de las interacciones aves marinas­barcos e identificar áreas con actividad pesquera no reportada. Nuestros modelos mostraron un ajuste moderado (área bajo la curva > 0.7) a los datos de rastreo de barcos, lo que indica una fuerte asociación entre las pardelas y los barcos en los principales sitios de pesca, aunque en las regiones con alto tránsito de barcos las detecciones por radar también fueron causadas por barcos no pesqueros. Las marcas registraron la presencia del potencial de barcos pesqueros sin regular y sin reportar en aguas del oeste de África, en donde los buques mercantes son poco comunes pero la actividad pesquera es intensa. En general, los detectores por radar en las aves mostraron áreas y periodos en donde la asociación entre las aves marinas y los barcos pesqueros legales e ilegales es alta. Estos detectores por radar podrían mejorar el enfoque de los esfuerzos de conservación.

3.
Ecol Evol ; 13(12): e10743, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38152347

RESUMEN

Body condition in pelagic seabirds impacts key fitness-related traits such as reproductive performance and breeding frequency. Regulation of body condition can be especially important for species with long incubation periods and long individual incubation shifts between foraging trips. Here, we show that body condition of adult Red-billed Tropicbirds (Phaethon aethereus) at St Helena Island, South Atlantic Ocean, exhibited considerable variation between years (2013-2017) and between different stages of the breeding cycle. Females took the first incubation shift following egg laying, after which males and females alternated incubation shifts of varying length, ranging from <1 to 12 days. Body condition declined in both sexes during an incubation shift by an average of 22 g (2.83% of starting mass) per day and over the incubation period; mass loss was significantly greater during longer incubation shifts, later within a shift and later in the total incubation period. There was also significant differences in incubation behaviour and body condition between years; in 2015, coinciding with a moderate coastal warming event along the Angolan-Namibian coastlines, adults on average undertook longer incubation shifts than in other years and had lower body condition. This suggests that substantial between-year prey fluctuations in the Angola Benguela upwelling system may influence prey availability, in turn affecting incubation behaviour and regulation of body condition. Adults rearing chicks showed a significant reduction in body condition when chicks showed the fastest rate of growth. Chick growth rates during 2017 from two localities in the Atlantic Ocean: an oceanic (St Helena) versus neritic (Cabo Verde) population were similar, but chicks from St Helena were overall heavier and larger at fledging. Results from this multi-year study highlight that flexibility and adaptability in body condition regulation will be important for populations of threatened species to optimise resources as global climate change increasingly influences prey availability.

4.
Sci Data ; 10(1): 787, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945571

RESUMEN

Birds in seasonal habitats rely on intricate strategies for optimal timing of migrations. This is governed by environmental cues, including photoperiod. Genetic factors affecting intrinsic timekeeping mechanisms, such as circadian clock genes, have been explored, yielding inconsistent findings with potential lineage-dependency. To clarify this evidence, a systematic review and phylogenetic reanalysis was done. This descriptor outlines the methodology for sourcing, screening, and processing relevant literature and data. PRISMA guidelines were followed, ultimately including 66 studies, with 34 focusing on candidate genes at the genotype-phenotype interface. Studies were clustered using bibliographic coupling and citation network analysis, alongside scientometric analyses by publication year and location. Data was retrieved for allele data from databases, article supplements, and direct author communications. The dataset, version 1.0.2, encompasses data from 52 species, with 46 species for the Clock gene and 43 for the Adcyap1 gene. This dataset, featuring data from over 8000 birds, constitutes the most extensive cross-species collection for these candidate genes, used in studies investigating gene polymorphisms and seasonal bird migration.


Asunto(s)
Migración Animal , Proteínas Aviares , Aves , Alelos , Ritmo Circadiano/genética , Fotoperiodo , Filogenia , Polimorfismo Genético , Revisiones Sistemáticas como Asunto , Animales , Proteínas Aviares/genética , Migración Animal/fisiología
5.
Nat Commun ; 14(1): 3665, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402727

RESUMEN

Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.


Asunto(s)
Plásticos , Residuos , Animales , Plásticos/toxicidad , Residuos/análisis , Monitoreo del Ambiente , Océanos y Mares , Aves , Océano Índico
7.
Mov Ecol ; 11(1): 41, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488611

RESUMEN

BACKGROUND: State-space models, such as Hidden Markov Models (HMMs), are increasingly used to classify animal tracks into behavioural states. Typically, step length and turning angles of successive locations are used to infer where and when an animal is resting, foraging, or travelling. However, the accuracy of behavioural classifications is seldom validated, which may badly contaminate posterior analyses. In general, models appear to efficiently infer behaviour in species with discrete foraging and travelling areas, but classification is challenging for species foraging opportunistically across homogenous environments, such as tropical seas. Here, we use a subset of GPS loggers deployed simultaneously with wet-dry data from geolocators, activity measurements from accelerometers, and dive events from Time Depth Recorders (TDR), to improve the classification of HMMs of a large GPS tracking dataset (478 deployments) of red-billed tropicbirds (Phaethon aethereus), a poorly studied pantropical seabird. METHODS: We classified a subset of fixes as either resting, foraging or travelling based on the three auxiliary sensors and evaluated the increase in overall accuracy, sensitivity (true positive rate), specificity (true negative rate) and precision (positive predictive value) of the models in relation to the increasing inclusion of fixes with known behaviours. RESULTS: We demonstrate that even with a small informed sub-dataset (representing only 9% of the full dataset), we can significantly improve the overall behavioural classification of these models, increasing model accuracy from 0.77 ± 0.01 to 0.85 ± 0.01 (mean ± sd). Despite overall improvements, the sensitivity and precision of foraging behaviour remained low (reaching 0.37 ± 0.06, and 0.06 ± 0.01, respectively). CONCLUSIONS: This study demonstrates that the use of a small subset of auxiliary data with known behaviours can both validate and notably improve behavioural classifications of state space models of opportunistic foragers. However, the improvement is state-dependant and caution should be taken when interpreting inferences of foraging behaviour from GPS data in species foraging on the go across homogenous environments.

8.
Conserv Biol ; 37(5): e14110, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37144486

RESUMEN

Fisheries bycatch is a critical threat to sea turtle populations worldwide, particularly because turtles are vulnerable to multiple gear types. The Canary Current is an intensely fished region, yet there has been no demographic assessment integrating bycatch and population management information of the globally significant Cabo Verde loggerhead turtle (Caretta caretta) population. Using Boa Vista island (Eastern Cabo Verde) subpopulation data from capture-recapture and nest monitoring (2013-2019), we evaluated population viability and estimated regional bycatch rates (2016-2020) in longline, trawl, purse-seine, and artisanal fisheries. We further evaluated current nesting trends in the context of bycatch estimates, existing hatchery conservation measures, and environmental (net primary productivity) variability in turtle foraging grounds. We projected that current bycatch mortality rates would lead to the near extinction of the Boa Vista subpopulation. Bycatch reduction in longline fisheries and all fisheries combined would increase finite population growth rate by 1.76% and 1.95%, respectively. Hatchery conservation increased hatchling production and reduced extinction risk, but alone it could not achieve population growth. Short-term increases in nest counts (2013-2021), putatively driven by temporary increases in net primary productivity, may be masking ongoing long-term population declines. When fecundity was linked to net primary productivity, our hindcast models simultaneously predicted these opposing long-term and short-term trends. Consequently, our results showed conservation management must diversify from land-based management. The masking effect we found has broad-reaching implications for monitoring sea turtle populations worldwide, demonstrating the importance of directly estimating adult survival and that nest counts might inadequately reflect underlying population trends.


Impactos demográficos ocultos de la pesca y determinantes ambientales de la fecundidad en una población de tortugas marinas Resumen La captura accidental de las pesquerías es una amenaza importante para la población mundial de tortugas marinas pues estos reptiles son vulnerables a muchos tipos de artes de pesca. Aunque la Corriente de Canarias es una zona de pesca intensa, no se han realizado análisis demográficos que integren información de la captura accidental y el manejo poblacional de la tortuga caguama de Cabo Verde (Caretta caretta), una población de importancia mundial. Usamos datos de captura-recaptura y monitoreo de nidos (2013-2019) de la subpoblación de la isla Boa Vista (Cabo Verde occidental) para evaluar la viabilidad poblacional y además estimamos el volumen de captura accidental a nivel regional (2016-2020) de las pesquerías de palangre, arrastre, red de cerco y artesanal. También analizamos las tendencias de la anidación en el contexto de las estimas actuales de captura accidental, del posible impacto del traslado de las puestas a viveros y de la variabilidad ambiental (productividad primaria neta) en la zona donde se alimentan las tortugas. Proyectamos que, de persistir, la tasa actual de mortalidad por captura accidental llevaría a la subpoblación de Boa Vista al borde de la extinción. La reducción de la captura accidental en la flota de palangre incrementaría la tasa finita de crecimiento poblacional en un 1.76% y la reducción en todas las flotas un 1.95%. El traslado de las puestas a viveros incrementó la producción de crías y redujo el riesgo de extinción, pero no logra el crecimiento poblacional por sí solo. Los incrementos a corto plazo en el conteo de nidos (2013-2021), causados posiblemente por los incrementos temporales en la productividad primaria neta, pueden estar ocultando un declive poblacional. Cuando relacionamos la fecundidad con la productividad primaria neta, nuestros modelos retrospectivos pronosticaron correctamente ambas tendencias, a corto y largo plazo. Como consecuencia, nuestros resultados mostraron que la gestión de la conservación debe diversificarse más allá de las medidas aplicadas durante la fase terrestre. Los efectos ocultos que descubrimos tienen implicaciones generales para el monitoreo de las poblaciones de tortugas marinas en otras partes del mundo, lo que demuestra la importancia de la estimación directa de la supervivencia de adultos y que el conteo de nidos podría no refleja correctamente las tendencias poblacionales subyacentes.


Asunto(s)
Tortugas , Animales , Conservación de los Recursos Naturales/métodos , Caza , Explotaciones Pesqueras , Fertilidad , Demografía
9.
Mar Environ Res ; 187: 105955, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37003079

RESUMEN

Overfishing has been drastically changing food webs in marine ecosystems, and it is pivotal to quantify these changes at the ecosystem level. This is especially important for ecosystems with a high diversity of top predators such as the Eastern Atlantic marine region. In this work we used high-throughput sequencing methods to describe the diet of the two most abundant tuna species, the Skipjack tuna (Katsuwonus pelamis) and the Yellowfin tuna (Thunnus albacares), highly targeted by fisheries off west Africa. We also explored prey diversity overlap between these tuna species and the seabird species breeding in Cabo Verde that are most likely to share prey preferences and suffer from bycatch, the Brown booby (Sula leucogaster) and Cape Verde shearwater (Calonectris edwardsii). Overall, the diet of both tuna species was more diverse than that of seabirds. Skipjack tuna diet was dominated by prey from lower trophic levels, such as krill, anchovies, and siphonophores, while the Yellowfin tuna diet was mainly based on epipelagic fish such as flying and halfbeak fishes. Some of the most abundant prey families detected in the Yellowfin tuna diet were shared with both seabird species, resulting in a high prey diversity overlap between this tuna species and seabirds These results have implications for the management of tuna fisheries in the Eastern Tropical Atlantic, because a large decrease of both tuna species might have cascading effects on both primary and secondary consumer levels, and the decrease of these underwater predators may have implications on the viability of tropical seabird populations.


Asunto(s)
Ecosistema , Atún , Animales , Conservación de los Recursos Naturales , Código de Barras del ADN Taxonómico , Explotaciones Pesqueras , Aves
10.
Sci Rep ; 13(1): 4793, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959235

RESUMEN

The richness and structure of symbiont assemblages are shaped by many factors acting at different spatial and temporal scales. Among them, host phylogeny and geographic distance play essential roles. To explore drivers of richness and structure of symbiont assemblages, feather mites and seabirds are an attractive model due to their peculiar traits. Feather mites are permanent ectosymbionts and considered highly host-specific with limited dispersal abilities. Seabirds harbour species-rich feather mite communities and their colonial breeding provides opportunities for symbionts to exploit several host species. To unravel the richness and test the influence of host phylogeny and geographic distance on mite communities, we collected feather mites from 11 seabird species breeding across the Atlantic Ocean and Mediterranean Sea. Using morphological criteria, we identified 33 mite species, of which 17 were new or recently described species. Based on community similarity analyses, mite communities were clearly structured by host genera, while the effect of geography within host genera or species was weak and sometimes negligible. We found a weak but significant effect of geographic distance on similarity patterns in mite communities for Cory's shearwaters Calonectris borealis. Feather mite specificity mainly occurred at the host-genus rather than at host-species level, suggesting that previously inferred host species-specificity may have resulted from poorly sampling closely related host species. Overall, our results show that host phylogeny plays a greater role than geography in determining the composition and structure of mite assemblages and pinpoints the importance of sampling mites from closely-related host species before describing mite specificity patterns.


Asunto(s)
Ácaros , Animales , Mar Mediterráneo , Aves , Especificidad del Huésped , Océano Atlántico
12.
Mol Phylogenet Evol ; 179: 107671, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36442764

RESUMEN

Speciation is a continuous and complex process shaped by the interaction of numerous evolutionary forces. Despite the continuous nature of the speciation process, the implementation of conservation policies relies on the delimitation of species and evolutionary significant units (ESUs). Puffinus shearwaters are globally distributed and threatened pelagic seabirds. Due to remarkable morphological status the group has been under intense taxonomic debate for the past three decades. Here, we use double digest Restriction-Site Associated DNA sequencing (ddRAD-Seq) to genotype species and subspecies of North Atlantic and Mediterranean Puffinus shearwaters across their entire geographical range. We assess the phylogenetic relationships and population structure among and within the group, evaluate species boundaries, and characterise the genomic landscape of divergence. We find that current taxonomies are not supported by genomic data and propose a more accurate taxonomy by integrating genomic information with other sources of evidence. Our results show that several taxon pairs are at different stages of a speciation continuum. Our study emphasises the potential of genomic data to resolve taxonomic uncertainties, which can help to focus management actions on relevant taxa, even if they do not necessarily coincide with the taxonomic rank of species.


Asunto(s)
Genoma , Genómica , Animales , Filogenia , Especificidad de la Especie , Aves/genética
13.
Glob Chang Biol ; 29(3): 648-667, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278894

RESUMEN

Anthropogenic climate change is resulting in spatial redistributions of many species. We assessed the potential effects of climate change on an abundant and widely distributed group of diving birds, Eudyptes penguins, which are the main avian consumers in the Southern Ocean in terms of biomass consumption. Despite their abundance, several of these species have undergone population declines over the past century, potentially due to changing oceanography and prey availability over the important winter months. We used light-based geolocation tracking data for 485 individuals deployed between 2006 and 2020 across 10 of the major breeding locations for five taxa of Eudyptes penguins. We used boosted regression tree modelling to quantify post-moult habitat preference for southern rockhopper (E. chrysocome), eastern rockhopper (E. filholi), northern rockhopper (E. moseleyi) and macaroni/royal (E. chrysolophus and E. schlegeli) penguins. We then modelled their redistribution under two climate change scenarios, representative concentration pathways RCP4.5 and RCP8.5 (for the end of the century, 2071-2100). As climate forcings differ regionally, we quantified redistribution in the Atlantic, Central Indian, East Indian, West Pacific and East Pacific regions. We found sea surface temperature and sea surface height to be the most important predictors of current habitat for these penguins; physical features that are changing rapidly in the Southern Ocean. Our results indicated that the less severe RCP4.5 would lead to less habitat loss than the more severe RCP8.5. The five taxa of penguin may experience a general poleward redistribution of their preferred habitat, but with contrasting effects in the (i) change in total area of preferred habitat under climate change (ii) according to geographic region and (iii) the species (macaroni/royal vs. rockhopper populations). Our results provide further understanding on the regional impacts and vulnerability of species to climate change.


Asunto(s)
Spheniscidae , Humanos , Animales , Fitomejoramiento , Ecosistema , Predicción , Cambio Climático , Océanos y Mares
14.
Sci Total Environ ; 847: 157352, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35843319

RESUMEN

Climate change has repeatedly been shown to impact the demography and survival of marine top predators. However, most evidence comes from single populations of widely distributed species, limited mainly to polar and subpolar environments. Here, we aimed to evaluate the influence of environmental conditions on the survival of a tropical and migratory seabird over the course of its annual cycle. We used capture-mark-recapture data from three populations of Bulwer's petrel (Bulweria bulwerii) spread across the NE Atlantic Ocean, from the Azores, Canary, and Cabo Verde Islands (including temperate to tropical zones). We also inferred how the survival of this seabird might be affected under different climatic scenarios, defined by the Intergovernmental Panel on Climate Change. Among the environmental variables whose effect we evaluated (North Atlantic Oscillation index, Southern Oscillation Index, Sea Surface Temperature [SST] and wind speed), SST estimated for the breeding area and season was the variable with the greatest influence on adult survival. Negative effects of SST increase emerged across the three populations, most likely through indirect trophic web interactions. Unfortunately, our study also shows that the survival of Bulwer's petrel will be profoundly affected by the different scenarios of climate change, even with the most optimistic trajectory involving the lowest greenhouse gas emission. Furthermore, for the first time, our study predicts stronger impacts of climate change on tropical populations than on subtropical and temperate ones. This result highlights the devastating effect that climate change may also have on tropical areas, and the importance of considering multi-population approaches when evaluating its impacts which may differ across species distributions.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Animales , Océano Atlántico , Aves , Estaciones del Año , Clima Tropical
15.
Genome Biol Evol ; 14(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524941

RESUMEN

The Balearic shearwater (Puffinus mauretanicus) is the most threatened seabird in Europe and a member of the most speciose group of pelagic seabirds, the order Procellariiformes, which exhibit extreme adaptations to a pelagic lifestyle. The fossil record suggests that human colonisation of the Balearic Islands resulted in a sharp decrease of the Balearic shearwater population size. Currently, populations of the species continue to be decimated mainly due to predation by introduced mammals and bycatch in longline fisheries, with some studies predicting its extinction by 2070. Here, using a combination of short and long reads, we generate the first high-quality reference genome for the Balearic shearwater, with a completeness amongst the highest across available avian species. We used this reference genome to study critical aspects relevant to the conservation status of the species and to gain insights into the adaptation to a pelagic lifestyle of the order Procellariiformes. We detected relatively high levels of genome-wide heterozygosity in the Balearic shearwater despite its reduced population size. However, the reconstruction of its historical demography uncovered an abrupt population decline potentially linked to a reduction of the neritic zone during the Penultimate Glacial Period (∼194-135 ka). Comparative genomics analyses uncover a set of candidate genes that may have played an important role into the adaptation to a pelagic lifestyle of Procellariiformes, including those for the enhancement of fishing capabilities, night vision, and the development of natriuresis. The reference genome obtained will be the crucial in the future development of genetic tools in conservation efforts for this Critically Endangered species.


Asunto(s)
Aves , Especies en Peligro de Extinción , Animales , Aves/genética , Demografía , Genómica , Humanos , Mamíferos , Conducta Predatoria
16.
Mov Ecol ; 10(1): 5, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123590

RESUMEN

BACKGROUND: Understanding the evolution of migration requires knowledge of the patterns, sources, and consequences of variation in migratory behaviour, a need exacerbated by the fact that many migratory species show rapid population declines and require knowledge-based conservation measures. We therefore need detailed knowledge on the spatial and temporal distribution of individuals across their annual cycle, and quantify how the spatial and temporal components of migratory behaviour vary within and among individuals. METHODS: We tracked 138 migratory journeys undertaken by 64 adult common terns (Sterna hirundo) from a breeding colony in northwest Germany to identify the annual spatiotemporal distribution of these birds and to evaluate the individual repeatability of eleven traits describing their migratory behaviour. RESULTS: Birds left the breeding colony early September, then moved south along the East Atlantic Flyway. Wintering areas were reached mid-September and located at the west and south coasts of West Africa as well as the coasts of Namibia and South Africa. Birds left their wintering areas late March and reached the breeding colony mid-April. The timing, total duration and total distance of migration, as well as the location of individual wintering areas, were moderately to highly repeatable within individuals (repeatability indexes: 0.36-0.75, 0.65-0.66, 0.93-0.94, and 0.98-1.00, respectively), and repeatability estimates were not strongly affected by population-level inter-annual variation in migratory behaviour. CONCLUSIONS: We found large between-individual variation in common tern annual spatiotemporal distribution and strong individual repeatability of several aspects of their migratory behaviour.

17.
Ecol Evol ; 11(21): 14960-14976, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765153

RESUMEN

Seabirds, particularly Procellariiformes, are highly mobile organisms with a great capacity for long dispersal, though simultaneously showing high philopatry, two conflicting life-history traits that may lead to contrasted patterns of genetic population structure. Landmasses were suggested to explain differentiation patterns observed in seabirds, but philopatry, isolation by distance, segregation between breeding and nonbreeding zones, and oceanographic conditions (sea surface temperatures) may also contribute to differentiation patterns. To our knowledge, no study has simultaneously contrasted the multiple factors contributing to the diversification of seabird species, especially in the gray zone of speciation. We conducted a multilocus phylogeographic study on a widespread seabird species complex, the little shearwater complex, showing highly homogeneous morphology, which led to considerable taxonomic debate. We sequenced three mitochondrial and six nuclear markers on all extant populations from the Atlantic (lherminieri) and Indian Oceans (bailloni), that is, five nominal lineages from 13 populations, along with one population from the eastern Pacific Ocean (representing the dichrous lineage). We found sharp differentiation among populations separated by the African continent with both mitochondrial and nuclear markers, while only mitochondrial markers allowed characterizing the five nominal lineages. No differentiation could be detected within these five lineages, questioning the strong level of philopatry showed by these shearwaters. Finally, we propose that Atlantic populations likely originated from the Indian Ocean. Within the Atlantic, a stepping-stone process accounts for the current distribution. Based on our divergence time estimates, we suggest that the observed pattern of differentiation mostly resulted from historical and current variation in sea surface temperatures.

18.
Biol Lett ; 17(3): 20200804, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33757296

RESUMEN

Costs of reproduction on survival have captured the attention of researchers since life history theory was formulated. Adults of long-lived species may increase survival by reducing their breeding effort or even skipping reproduction. In this study, we aimed to evaluate the costs of current reproduction on survival and whether skipping reproduction increases adult survival in a long-lived seabird. We used capture-mark-recapture data (1450 encounters) from two populations of Bulwer's petrel (Bulweria bulwerii), breeding in the Azores and Canary Islands, North Atlantic Ocean. Using a multi-event model with two different breeding statuses (breeders versus non-breeders), we calculated probabilities of survival and of transitions between breeding statuses, evaluating potential differences between sexes. Females had lower survival probabilities than males, independent of their breeding status. When considering breeding status, breeding females had lower survival probabilities than non-breeding females, suggesting costs of reproduction on survival. Breeding males had higher survival probabilities than non-breeding males, suggesting that males do not incur costs of reproduction on survival and that only the highest quality males have access to breeding. The highest and the lowest probabilities of skipping reproduction were found in breeding males from the Azores and in breeding males from the Canary Islands, respectively. Intermediate values were observed in the females from both populations. This result is probably due to differences in the external factors affecting both populations, essentially predation pressure and competition. The existence of sex-specific costs of reproduction on survival in several populations of this long-lived species may have important implications for species population dynamics.


Asunto(s)
Aves , Reproducción , Animales , Océano Atlántico , Azores , Femenino , Masculino , España
19.
Sci Adv ; 7(10)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658194

RESUMEN

Migratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.

20.
J Anim Ecol ; 90(5): 1109-1121, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550590

RESUMEN

Sexual segregation in foraging strategies has been little studied in marine species with slight sexual size dimorphism (SSD), particularly regarding the role of environmental conditions and fishery activities. Sexual differences in fishery attendance are of particular concern because uneven mortality associated with bycatch may exacerbate impacts in wildlife populations. Using a seabird species with slight SSD, the Scopoli's shearwater Calonectris diomedea, we assessed sexual differences in foraging strategies and evaluated whether annual environmental conditions and fishery activity shaped such differences. We used a 4-year dataset combining bird GPS tracking, stable isotope analysis, the North Atlantic Oscillation index (NAO, as main proxy of the annual environmental conditions), and fishing vessel positioning data (Vessel Monitoring System, VMS) from the North Western Mediterranean, a region under intense fishery pressure. From 2012 to 2015, we tracked 635 foraging trips from 78 individuals. Females showed a greater foraging effort, a lower fishery attendance, a lower trophic level, and a narrower isotopic niche width than males. Moreover, in years with unfavourable environmental conditions, both sexes showed a lower fishery attendance and increased foraging effort compared to the year with most favourable conditions. Our results revealed that environmental conditions influence space use, feeding resources and fishery attendance differently in males and females, overall suggesting competitive exclusion of females by males from main foraging areas and feeding resources, particularly in unfavourable environmental conditions. We highlight the importance of evaluating sexual segregation under disparate environmental conditions, particularly in species with slight SSD, since segregation may pass otherwise unnoticed if only years with similar environmental conditions are considered. The higher fishery attendance of males likely explains the male-biased bycatch ratio for this species. Thus, inter-sexual differences in foraging strategies can lead to an unbalanced exposure to relevant threats and have implications for the conservation of long-lived species.


La segregación sexual en especies con dimorfismo sexual poco acusado ha sido escasamente estudiada, particularmente en relación al papel de las condiciones ambientales y las pesquerías en las estrategias de búsqueda de alimento. Diferencias entre sexos en la asociación con pesquerías son de especial interés, ya que el impacto de las capturas accidentales sobre la dinámica poblacional podría magnificarse. En este trabajo exploramos las diferencias entre sexos en las estrategias de búsqueda de alimento en la pardela cenicienta (Calonectris diomedea) en el noroeste del Mediterráneo, y evaluamos si cambios anuales en las condiciones ambientales y las pesquerías modulan dichas diferencias. Utilizamos cuatro años de datos, integrando el seguimiento GPS de las aves, el análisis de isótopos estables, el índice NAO, y el seguimiento remoto de barcos pesqueros que operan en la zona (datos VMS). Entre 2012 y 2015 obtuvimos 635 viajes de alimentación de 78 individuos. Encontramos diferencias en las estrategias de búsqueda de alimento entre sexos a pesar del dimorfismo sexual poco acusado de esta especie. En comparación con los machos, las hembras mostraron mayor esfuerzo (viajes más largos en tiempo y distancia), menor asociación con barcos de pesca, menor nivel trófico (es decir, valores de δ15 N en plasma que apuntan a un menor consumo de descartes) y un nicho isotópico más estrecho. Nuestros resultados revelaron que las condiciones ambientales influyen en las diferencias sexuales en las estrategias de búsqueda y uso de recursos de alimentación, así como en la interacción con pesquerías. En general, esto sugiere cierta exclusión competitiva de machos hacia hembras, particularmente en años desfavorables. Incluir años con condiciones ambientales dispares en el análisis puede ayudar a determinar la segregación sexual en especies con dimorfismo sexual poco acusado. Además, en especies longevas, las diferencias sexuales en las estrategias de búsqueda de alimento pueden conllevar diferente exposición a ciertas amenazas como las capturas accidentales en artes de pesca, lo que debe considerarse en el diseño de estrategias de conservación.


Asunto(s)
Conducta Alimentaria , Explotaciones Pesqueras , Animales , Aves , Femenino , Masculino , Caracteres Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...