Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(22)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37294907

RESUMEN

In this work, we propose a theoretical finite element description of the ionic profiles of a general mixture of n species of spherical charged particles dissolved in an implicit solvent, with arbitrary size and charge asymmetries, neutralizing a spherical macroion. This approach aims to close the gap between the nano- and the micro-scales in macroion solutions, taking into account the ion correlations and ionic excluded volume effects consistently. When these last two features are neglected, the classical non-linear Poisson-Boltzmann theory for n ionic species-with different ionic closest approach distances to the colloidal surface-is recovered as a limit case. As a proof of concept, we study the electrical double layer of an electroneutral mixture of oppositely charged colloids and small microions, with an asymmetry 1:333 in size and 1:10 in valence, in salt-free and added salt environments. Our theoretical approach displays a good agreement regarding the ionic profiles, the integrated charge, and the mean electrostatic potential obtained from molecular dynamics simulations with explicit-sized microions. Although the non-linear Poisson-Boltzmann colloid-colloid and colloid-microion profiles differ notably from those obtained via molecular dynamics simulations with explicit small-sized ions, the associated mean electrostatic potential agrees well with the corresponding explicit microion simulations.


Asunto(s)
Coloides , Electricidad , Iones , Electricidad Estática , Solventes
3.
Adv Colloid Interface Sci ; 270: 54-72, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31181349

RESUMEN

In charged colloidal dispersion systems the interest is in finding their stability conditions, phase transitions, and transport properties, either in bulk or confinement, among other physicochemical quantities, for which the knowledge of the dispersions' molecular structure and the associated macroion-macroion forces is crucial. To investigate these phenomena simple models have been proposed. Most of the theoretical and simulation studies on charged particles suspensions are at infinite dilution conditions. Hence, these studies have been focused on the electrolyte structure around one or two isolated central particle(s), where phenomena as charge reversal, charge inversion and surface charge amplification have been shown to be relevant. However, experimental studies at finite volume fraction exhibit interesting phenomenology which imply very long-range correlations. A simple, yet useful, model is the Colloidal Primitive Model, in which the colloidal dispersion is modeled as a mixture of size (and charge) asymmetrical hard spheres, at finite volume fraction. In this paper we review recent integral equations solutions for this model, where very long-range attractive-repulsive forces, as well as new long-range, giant charge inversions are reported. The calculated macroions radial distribution functions, charge distributions, and macroion-macroion forces are qualitatively consistent with existing experimental results, and Monte Carlo and molecular dynamics simulations.

4.
J Chem Phys ; 149(16): 164905, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30384730

RESUMEN

In this paper, we present a Monte Carlo simulation study on the structure of the electrical double layer around a spherical colloid surrounded by a binary electrolyte composed of spherical and non-spherical ions. Results are provided for the radial distribution functions between the colloid and ions, the orientation correlations between the colloid and non-spherical particles, and the integrated charge. Work is reported mainly for non-spherical particles modeled as spherocylinders, although a particular comparison is made between spherocylindrical particles and dimers. For the conditions investigated here, spherocylinders and dimers produce essentially the same structural information. Additionally, it is shown that spherocylinders mostly orient tangentially to the colloid at its surface; this preferred orientation disappears for larger distances. We also evidence that, near the colloid, the integrated charge attenuates monotonically when the macroparticle is highly charged, whereas for intermediate and low charged states of the colloid, the integrated charge can display charge reversal, overcharging, or both, with magnitudes that are sensitive to the salt concentration and to the localization of charge inside the spherocylinders.

5.
J Phys Chem B ; 122(27): 7002-7008, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29911869

RESUMEN

Most theoretical and simulation studies on charged suspensions are at infinite dilution and are focused on the electrolyte structure around one or two isolated particles. Some classic experimental studies with latex particle solutions exhibit interesting phenomenology which imply very-long-range correlations. Here, we apply an integral equation theory to a model charged macroion suspension, at finite volume fraction, and find an amplitude-modulated charge inversion structure, with outsized amplitudes and of very-long-range extension. These inversions are different from the standard charge inversions in that they occur at finite macroions' volume fraction, far away from the central macroion, are outsized, and increase, not decrease, with increasing particle charge and distance to the central particle, which is indicative of long-range correlations. We find our results to be in agreement with our Monte Carlo simulations and qualitatively consistent with existing experimental results.

6.
J Chem Phys ; 148(15): 154703, 2018 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-29679975

RESUMEN

The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.

7.
Phys Chem Chem Phys ; 20(1): 262-275, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29204593

RESUMEN

The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.

8.
Phys Chem Chem Phys ; 18(31): 21852-64, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27435382

RESUMEN

The asymptotic convergence of the thermodynamic and structural properties of unequally-sized charge-symmetric ions in strong electric fields was postulated more than thirty years ago by Valleau and Torrie as the dominance of counterions via the non-linear Poisson-Boltzmann theory [Valleau and Torrie, J. Chem. Phys., 1982, 76, 4623]. According to this mean field prescription, the properties of the electrical double layer near a highly charged electrode immersed in a size-asymmetric binary electrolyte converge to those of a size-symmetric electrolyte if the properties of counterions are the same in both instances. On the other hand, some of the present authors have shown that, in fact, counterions do not dominate the electrical properties of a spherical macroion in the presence of unequally-sized ions, symmetric in valence, if ion correlations and ionic excluded volume effects are taken into account consistently. These ingredients are neglected in the classical Poisson-Boltzmann picture. In the present work, we show the occurrence of the non-dominance of counterions in the opposite scenario, that is, when ions are equally-sized but asymmetric in valence. This is performed in the presence of highly charged colloidal surfaces of spherical and planar geometries for different ionic volume fractions. In addition to the phenomenon of non-dominance of counterions, our simulations and theoretical data also exhibit a non-monotonic order or precedence in the mean electrostatic potential, or electrostatic screening, at the Helmholtz plane of a charged colloid. This interesting behaviour is analyzed as a function of the coion's valence, the ionic volume fraction, and the charge and size of the colloidal particle. All these phenomena are explained in terms of the decay of the electric field near the colloidal surface, and by the appearance of a local inversion of both the electric field and the integrated surface charge density of the colloidal particle in the presence of monovalent counterions and multivalent coions.

9.
J Chem Phys ; 135(5): 054701, 2011 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-21823720

RESUMEN

The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-electrolytes with different ion sizes.

10.
J Chem Phys ; 132(5): 054903, 2010 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-20136335

RESUMEN

The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021501, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792127

RESUMEN

Monte Carlo simulations of a spherical macroion, surrounded by a size-asymmetric electrolyte in the primitive model, were performed. We considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice the size of counterions), for several surface charge densities of the macrosphere. The radial distribution functions, electrostatic potential in all the space and at the Helmholtz surfaces, and integrated charge are reported. We compare these simulational data with original results obtained from the Ornstein-Zernike integral equation, supplemented by the hypernetted chain-hypernetted chain (HNC-HNC) and hypernetted chain-mean spherical approximation (HNC-MSA) closures, and with the corresponding calculations using the modified Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC-HNC and HNC-MSA integral equations formalisms show good concordance with Monte Carlo "experiments," whereas the notable limitations of point-ion approaches are evidenced. Most importantly, the simulations confirm our previous theoretical predictions of the nondominance of the counterions in the size-asymmetric spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the appearance of anomalous curvatures at the outer Helmholtz plane, and the enhancement of the charge reversal and screening at high colloidal surface charge densities due to the ionic size asymmetry.

12.
J Chem Phys ; 128(4): 044506, 2008 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-18247968

RESUMEN

In this work we present a computer simulation study of charged hard spherocylinders of aspect ratio L/sigma=5, using NVT and NPT Monte Carlo methods. Coulombic interactions are handled using the Wolf method [D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)]. Thermodynamic and structural properties are in excellent agreement with the results obtained with the standard Ewald summation method. A partial prediction of the corresponding phase diagram is obtained by studying two isotherms of this system. The stability of the liquid crystalline phases is examined and compared with the phase diagrams of neutral hard spherocylinders and dipolar hard spherocylinders.

13.
J Chem Phys ; 123(3): 34703, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16080751

RESUMEN

The hypernetted chain/mean spherical approximation (HNC/MSA) integral equation for a totally asymmetric primitive model electrolyte around a spherical macroparticle is obtained and solved numerically in the case of size-asymmetric systems. The ensuing radial distribution functions show a very good agreement when compared to our Monte Carlo and molecular-dynamics simulations for spherical geometry and with respect to previous anisotropic reference HNC calculations in the planar limit. We report an analysis of the potential versus charge relationship, radial distribution functions, mean electrostatic potential, and cumulative reduced charge for representative examples of 1:1 and 2:2 salts with a size-asymmetry ratio of 2. Our results are collated with those of the modified Gouy-Chapman (MGC) and unequal radius modified Gouy-Chapman (URMGC) theories and with those of HNC/MSA in the restricted primitive model (RPM) to assess the importance of size-asymmetry effects. One of the most striking characteristics found is that, contrary to the general belief, away from the point of zero charge the properties of an asymmetric electrical double layer (EDL) are not those corresponding to a symmetric electrolyte with the size and charge of the counterion, i.e., counterions do not always dominate. This behavior suggests the existence of a new phenomenology in the EDL that genuinely belongs to a more realistic size-asymmetric model where steric correlations are taken into account consistently. Such novel features cannot be described by traditional mean-field theories such as MGC, URMGC, or even by enhanced formalisms, such as HNC/MSA, if they are based on the RPM.

14.
J Chem Phys ; 120(20): 9782-92, 2004 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-15267994

RESUMEN

The restricted primitive model of an electrical double layer around a spherical macroparticle is studied by using integral equation theories and Monte Carlo simulations. The resulting theoretical curves for the Helmholtz and surface potentials versus the macroparticle charge show an unexpected positive curvature when the ionic size of uni- and divalent electrolyte species is increased. This is a novel effect that is confirmed here by computer experiments. An explanation of this phenomenon is advanced in terms of the adsorption and layering of the electrolytic species and of the compactness of the diffuse double layer. It is claimed that the interplay between electrostatic and ionic size correlation effects, absent in the classical Poisson-Boltzmann view, is responsible for this singularity.

15.
Chemphyschem ; 4(3): 234-48, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12674596

RESUMEN

A broad range of manufactured products and biological fluids are colliods. The ability to understand and control the processes (of scientific, technological and industrial interest) in which such colloids are involved relies upon a precise knowledge of the electrical double layer. The traditional approach to describing this ion cloud around colloidal particles has been the Gouy-Chapman model developed on the basis of the Poisson-Boltzmann equation. Since the early 1980s, however, more sophisticated theoretical treatments have revealed both quantitative and qualitative deficiencies in the Poisson-Boltzmann theory, particularly at high ionic strengths and/or high surface charge densities. This review deals with these novel approaches, which are mostly computer simulations and approximate integral equation theories based on the so-called primitive model. Special attention is paid to phenomena that cannot be accounted for by the classic theory as a result of neglecting ion size correlations, such as overcharging, namely, the counterion concentration in the immediate neighborhood of the surface is so large that the particle surface is overcompensated. Other illustrative examples are the nonmonotonic behavior of the electrostatic potential and attractive interactions between equally charged surfaces. These predictions are certainly remarkable and, on paper, they can have an effect on experimentally measurable quantities (for instance, electrophoretic mobility). Even so, these new approaches have scarcely been applied in practice. Thus a critical survey on the relevance of ion size correlation in real systems is also included. Overcharging of macroions can also be brought about by adsorption of oppositely charged polyelectrolytes. Noteworthy examples and theoretical approaches for them are also briefly reviewed.


Asunto(s)
Coloides/química , Distribución de Poisson , Simulación por Computador , ADN/química , Liposomas/química , Electricidad Estática
16.
J Colloid Interface Sci ; 239(2): 285-295, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11426992

RESUMEN

The electrophoresis of a spherical macroion is calculated with the new primitive model electrophoresis (PME) theory, which incorporates the ionic size. The results are compared with the classical theory of Wiersema, O'Brien, and White. The PME mobility, as a function of the macroion's surface charge (sigma) or zeta potential (zeta), is found to depend on the ionic valence, radius and concentration, and macroion hydrodynamical radius (A); i.e., it is not universal with kappaA, as predicted by the classical theory. The mobility is very nonlinear as a function of zeta. This behavior is related to the nonlinear dependence of zeta, as a function of sigma, when ionic size is included in the theory. In the classical theory zeta is a monotonic function of sigma. Important quantitative and/or qualitative differences between PME and the classical theory are found. However, in the limit of zero ionic diameter, and/or low salt concentration, and low macroion charge, the new theory reduces to the classical theory. The agreement of the PME with experimental data is very good. In particular, the prediction of reversed mobility is corroborated by recent experimental data. Copyright 2001 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...