Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139339

RESUMEN

Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. According to guidelines amputation is the recommended treatment for patients with no-option critical ischemia of the limb (CTLI). In this article we propose cell therapy as an alternative strategy for those patients. We also suggest the optimal time-frame for an effective therapy, such as implanting autologous mononuclear cells (MNCs), autologous and allogeneic mesenchymal stromal cells (MSC) as these treatments induce neuropathy relief, regeneration of the blood vessels and tissues, with accelerated ulcer healing, with no serious side effects, proving that advanced therapy medicinal product (ATMPs) application is safe and effective and, hence, can significantly prevent limb amputation.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Enfermedad Arterial Periférica , Enfermedades del Sistema Nervioso Periférico , Humanos , Pie Diabético/etiología , Pie Diabético/terapia , Factores de Riesgo , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/complicaciones , Enfermedades del Sistema Nervioso Periférico/complicaciones , Amputación Quirúrgica , Tratamiento Basado en Trasplante de Células y Tejidos , Isquemia/terapia , Isquemia/complicaciones
2.
Front Immunol ; 14: 1232472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767093

RESUMEN

An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.

3.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509983

RESUMEN

Phascolarctobacterium faecium is a strict anaerobe belonging to the Firmicutes phylum that is found abundantly in the human gastrointestinal tract. Here, we report the complete genome sequence of P. faecium G 104, a strain isolated from a fresh stool sample from a healthy lean donor.

4.
Nat Commun ; 11(1): 2044, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341346

RESUMEN

Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Stenotrophomonas maltophilia/genética , Alelos , Análisis por Conglomerados , Infección Hospitalaria/microbiología , Genoma Bacteriano , Geografía , Humanos , Infecciones Oportunistas/microbiología , Filogenia , Stenotrophomonas maltophilia/efectos de los fármacos , Virulencia
5.
Front Microbiol ; 10: 2509, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736929

RESUMEN

OXA-48 is the most common carbapenemase in Enterobacterales in Germany and one of the most frequent carbapenemases worldwide. Several reports have associated bla OXA - 48 with a virulent host phenotype. To challenge this hypothesis, 35 OXA-48-producing clinical isolates of Escherichia coli (n = 15) and Klebsiella pneumoniae (n = 20) were studied in vitro, in vivo employing the Galleria mellonella infection model and by whole-genome sequencing. Clinical isolates belonged to 7 different sequence types (STs) in E. coli and 12 different STs in K. pneumoniae. In 26/35 isolates bla OXA- 48 was located on a 63 kb IncL plasmid. Horizontal gene transfer (HGT) to E. coli J53 was high in isolates with the 63 kb IncL plasmid (transconjugation frequency: ∼103/donor) but low in isolates with non-IncL plasmids (<10-6/donor). Several clinical isolates were both highly cytotoxic against human cells and virulent in vivo. However, 63 kb IncL transconjugants generated from these highly virulent isolates were not more cytotoxic or virulent when compared to the recipient strain. Additionally, no genes associated with virulence were detected by in silico analysis of OXA-48 plasmids. The 63 kb plasmid was highly stable and did not impair growth or fitness in E. coli J53. In conclusion, OXA-48 clinical isolates in Germany are diverse but typically harbor the same 63 kb IncL plasmid which has been reported worldwide. We demonstrate that this 63 kb IncL plasmid has a low fitness burden, high plasmid stability and can be transferred by highly efficient HGT which is likely the cause of the rapid dissemination of OXA-48 rather than the expansion of a single clone or gain of virulence.

6.
Sci Rep ; 9(1): 6959, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-31061423

RESUMEN

To trace the routes and frequencies of transmission of Clostridioides difficile in a tertiary-care hospital in Madrid (Spain), we sequenced the genomes from all C. difficile isolates collected over 36 months (2014-2016) that were indistinguishable from any other isolate by PCR ribotyping. From a total of 589 C. difficile infection cases, we cultivated and PCR-ribotyped 367 C. difficile isolates (62%), of which 265 were genome-sequenced. Based on close relatedness of successively collected isolates (≤2 SNPs difference in their genomes), whole-genome sequencing revealed a total of 17 independent, putative transmission clusters, caused by various C. difficile strains and each containing 2 to 18 cases, none of which had been detected previously by standard epidemiological surveillance. Proportions of linked isolates varied widely among PCR ribotypes, from 3% (1/36) for ribotype 014/020 to 60% (12/20) for ribotype 027, suggesting differential aptitudes for nosocomial spread. Remarkably, only a minority (17%) of transmission recipients had direct ward contact to their presumed donors and specific C. difficile genome types frequently went undetectable for several months before re-emerging later, suggesting reservoirs for the pathogen outside of symptomatic patients. Taken together, our analysis based on genome sequencing suggested considerable within-hospital epidemic spread of C. difficile, even though epidemiological data initially had been inconspicuous.


Asunto(s)
Clostridioides difficile/genética , Infecciones por Clostridium/transmisión , Variación Genética , Genoma Bacteriano , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Niño , Preescolar , Clostridioides difficile/efectos de los fármacos , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
J Antimicrob Chemother ; 74(6): 1494-1502, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30844059

RESUMEN

OBJECTIVES: The aim of this study was to characterize the Acinetobacter calcoaceticus clinical isolate AC_2117 with the novel carbapenem-hydrolysing class D ß-lactamase (CHDL) OXA-679. METHODS: Identification of the species and ß-lactamases was verified by genome sequencing (PacBio) and phylogenetic analyses. Antibiotic susceptibility of AC_2117 and transformants harbouring cloned blaOXA-679 was evaluated using antibiotic gradient strips and microbroth dilution. OXA-679 was purified heterologously and kinetic parameters were determined using spectrometry or isothermal titration calorimetry. The impact of OXA-679 production during imipenem therapy was evaluated in the Galleria mellonella infection model. RESULTS: Sequencing of the complete genome of the clinical A. calcoaceticus isolate AC_2117 identified a novel CHDL, termed OXA-679. This enzyme shared sequence similarity of 71% to each of the families OXA-143 and OXA-24/40. Phylogenetic analyses revealed that OXA-679 represents a member of a new OXA family. Cloning and expression of blaOXA-679 as well as measurement of kinetic parameters revealed the effective hydrolysis of carbapenems which resulted in reduced susceptibility to carbapenems in Escherichia coli and A. calcoaceticus, and high-level carbapenem resistance in Acinetobacter baumannii. Infection of larvae of G. mellonella with a sublethal dose of blaOXA-679-expressing A. baumannii could not be cured by high-dose imipenem therapy, indicating carbapenem resistance in vivo. CONCLUSIONS: We identified blaOXA-679 in a clinical A. calcoaceticus isolate that represents a member of the new OXA-679 family and that conferred high-level carbapenem resistance in vitro and in vivo.


Asunto(s)
Acinetobacter calcoaceticus/efectos de los fármacos , Acinetobacter calcoaceticus/enzimología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana/genética , beta-Lactamasas/metabolismo , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter calcoaceticus/genética , Secuencia de Aminoácidos , Animales , Humanos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mariposas Nocturnas/microbiología , Conformación Proteica , Secuenciación Completa del Genoma
8.
BMC Genomics ; 15: 483, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24942065

RESUMEN

BACKGROUND: Alteromonas is a genus of marine bacteria that is very easy to isolate and grow in the laboratory. There are genomes available of the species Alteromonas macleodii from different locations around the world and an Alteromonas sp. isolated from a sediment in Korea. We have analyzed the genomes of two strains classified by 16S rRNA (>99% similarity) as the recently described species Alteromonas australica, and isolated from opposite ends of the world; A. australica DE170 was isolated in the South Adriatic (Mediterranean) at 1000 m depth while A. australica H17T was isolated from a sea water sample collected in St Kilda Beach, Tasman Sea. RESULTS: Although these two strains belong to a clearly different species from A. macleodii, the overall synteny is well preserved and the flexible genomic islands seem to code for equivalent functions and be located at similar positions. Actually the genomes of all the Alteromonas species known to date seem to preserve synteny quite well with the only exception of the sediment isolate SN2. Among the specific metabolic features found for the A. australica isolates there is the degradation of xylan and production of cellulose as extracellular polymeric substance by DE170 or the potential ethanol/methanol degradation by H17T. CONCLUSIONS: The genomes of the two A. australica isolates are not more different than those of strains of A. macleodii isolated from the same sample. Actually the recruitment from metagenomes indicates that all the available genomes are found in most tropical-temperate marine samples analyzed and that they live in consortia of several species and multiple clones within each. Overall the hydrolytic activities of the Alteromonas genus as a whole are impressive and fit with its known capabilities to exploit sudden inputs of organic matter in their environment.


Asunto(s)
Alteromonas/genética , Genoma Bacteriano , Alteromonas/clasificación , Mapeo Contig , Islas Genómicas , Integrones/genética , Metagenoma , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
9.
Genome Biol Evol ; 5(6): 1220-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23729633

RESUMEN

We have compared genomes of Alteromonas macleodii "deep ecotype" isolates from two deep Mediterranean sites and two surface samples from the Aegean and the English Channel. A total of nine different genomes were analyzed. They belong to five clonal frames (CFs) that differ among them by approximately 30,000 single-nucleotide polymorphisms (SNPs) over their core genomes. Two of the CFs contain three strains each with nearly identical genomes (~100 SNPs over the core genome). One of the CFs had representatives that were isolated from samples taken more than 1,000 km away, 2,500 m deeper, and 5 years apart. These data mark the longest proven persistence of a CF in nature (outside of clinical settings). We have found evidence for frequent recombination events between or within CFs and even with the distantly related A. macleodii surface ecotype. The different CFs had different flexible genomic islands. They can be classified into two groups; one type is additive, that is, containing different numbers of gene cassettes, and is very variable in short time periods (they often varied even within a single CF). The other type was more stable and produced the complete replacement of a genomic fragment by another with different genes. Although this type was more conserved within each CF, we found examples of recombination among distantly related CFs including English Channel and Mediterranean isolates.


Asunto(s)
Alteromonas/genética , Variación Genética , Secuencia de Bases , Ecotipo , Transferencia de Gen Horizontal , Genoma Bacteriano , Islas Genómicas , Región Mediterránea , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Recombinación Genética
10.
Microb Ecol ; 65(3): 720-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23269455

RESUMEN

Biodiversity estimates based on ribosomal operon sequence diversity rely on the premise that a sequence is characteristic of a single specific taxon or operational taxonomic unit (OTU). Here, we have studied the sequence diversity of 14 ribosomal RNA operons (rrn) contained in the genomes of two isolates (five operons in each genome) and four metagenomic fosmids, all from the same seawater sample. Complete sequencing of the isolate genomes and the fosmids establish that they represent strains of the same species, Alteromonas macleodii, with average nucleotide identity (ANI) values >97 %. Nonetheless, we observed high levels of intragenomic heterogeneity (i.e., variability between operons of a single genome) affecting multiple regions of the 16S and 23S rRNA genes as well as the internally transcribed spacer 1 (ITS-1) region. Furthermore, the ribosomal operons exhibited intergenomic heterogeneity (i.e., variability between operons located in separate genomes) in each of these regions, compounding the variability. Our data reveal the extensive heterogeneity observed in natural populations of A. macleodii at a single point in time and support the idea that distinct lineages of A. macleodii exist in the deep Mediterranean. These findings highlight the potential of rRNA fingerprinting methods to misrepresent species diversity while simultaneously failing to recognize the ecological significance of individual strains.


Asunto(s)
Alteromonas/genética , ADN Espaciador Ribosómico/genética , Variación Genética , Operón , ARN Ribosómico/genética , Agua de Mar/microbiología , Alteromonas/química , Alteromonas/clasificación , Alteromonas/aislamiento & purificación , Secuencia de Bases , Biodiversidad , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN Ribosómico/química
11.
Genome Biol Evol ; 4(12): 1360-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23212172

RESUMEN

We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (~80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat.


Asunto(s)
Alteromonas/genética , Ecotipo , Variación Genética , Genoma Bacteriano , Alteromonas/aislamiento & purificación , Proteínas Bacterianas/genética , Secuencia de Bases , Islas Genómicas , Biblioteca Genómica , Datos de Secuencia Molecular , Receptores de Superficie Celular/genética , Recombinación Genética , Agua de Mar/microbiología
12.
J Bacteriol ; 194(24): 6998, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23209244

RESUMEN

The genome of Alteromonas macleodii strain ATCC 27126(T) has been resequenced and closed into a single contig. We describe here the genome of this important and globally distributed marine bacterium.


Asunto(s)
Alteromonas/genética , Genoma Bacteriano , ADN Bacteriano/genética , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN
13.
Sci Rep ; 2: 696, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23019517

RESUMEN

Alteromonas macleodii is a marine gammaproteobacterium with widespread distribution in temperate or tropical waters. We describe three genomes of isolates from surface waters around Europe (Atlantic, Mediterranean and Black Sea) and compare them with a previously described deep Mediterranean isolate (AltDE) that belongs to a widely divergent clade. The surface isolates are quite similar, the most divergent being the Black Sea (BS11) isolate. The genomes contain several genomic islands with different gene content. The recruitment of very similar genomic fragments from metagenomes in different locations indicates that the surface clade is globally abundant with little effect of geography, even the AltDE and the BS11 genomes recruiting from surface samples in open ocean locations. The finding of CRISPR protospacers of AltDE in a lysogenic phage in the Atlantic (English Channel) isolate illustrates a flow of genetic material among these clades and a remarkably wide distribution of this phage.


Asunto(s)
Alteromonas/genética , Genoma Bacteriano , Agua de Mar/microbiología , Microbiología del Agua , Alteromonas/clasificación , Alteromonas/aislamiento & purificación , Océano Atlántico , Mar Negro , Islas Genómicas , Mar Mediterráneo , Metagenoma/genética , Fenotipo , Filogenia , Plásmidos/genética , Profagos/genética , ARN de Transferencia , Transcriptoma
14.
Appl Environ Microbiol ; 75(23): 7436-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19801465

RESUMEN

The use of carbon monoxide (CO) as a biological energy source is widespread in microbes. In recent years, the role of CO oxidation in superficial ocean waters has been shown to be an important energy supplement for heterotrophs (carboxydovores). The key enzyme CO dehydrogenase was found in both isolates and metagenomes from the ocean's photic zone, where CO is continuously generated by organic matter photolysis. We have also found genes that code for both forms I (low affinity) and II (high affinity) in fosmids from a metagenomic library generated from a 3,000-m depth in the Mediterranean Sea. Analysis of other metagenomic databases indicates that similar genes are also found in the mesopelagic and bathypelagic North Pacific and on the surfaces of this and other oceanic locations (in lower proportions and similarities). The frequency with which this gene was found indicates that this energy-generating metabolism would be at least as important in the bathypelagic habitat as it is in the photic zone. Although there are no data about CO concentrations or origins deep in the ocean, it could have a geothermal origin or be associated with anaerobic metabolism of organic matter. The identities of the microbes that carry out these processes were not established, but they seem to be representatives of either Bacteroidetes or Chloroflexi.


Asunto(s)
Aldehído Oxidorreductasas/genética , Metagenoma , Complejos Multienzimáticos/genética , Agua de Mar/microbiología , Bacteroidetes/genética , Chloroflexi/genética , Mar Mediterráneo , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...