Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxid Redox Signal ; 31(14): 1027-1052, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-31016989

RESUMEN

Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/mortalidad , Animales , Humanos , Síndrome de Dificultad Respiratoria/patología , Factores de Riesgo
2.
PLoS One ; 13(8): e0200916, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30161129

RESUMEN

INTRODUCTION: Pseudogenes are paralogues of functional genes historically viewed as defunct due to either the lack of regulatory elements or the presence of frameshift mutations. Recent evidence, however, suggests that pseudogenes may regulate gene expression, although the functional role of pseudogenes remains largely unknown. We previously reported that MYLKP1, the pseudogene of MYLK that encodes myosin light chain kinase (MLCK), is highly expressed in lung and colon cancer cell lines and tissues but not in normal lung or colon. The MYLKP1 promoter is minimally active in normal bronchial epithelial cells but highly active in lung adenocarcinoma cells. In this study, we further validate MYLKP1 as an oncogene via elucidation of the functional role of MYLKP1 genetic variants in colon cancer risk. METHODS: Proliferation and migration assays were performed in MYLKP1-transfected colon and lung cancer cell lines (H441, A549) and commercially-available normal lung and colon cells. Fourteen MYLKP1 SNPs (MAFs >0.01) residing within the 4 kb MYLKP1 promoter region, the core 1.4 kb of MYLKP1 gene, and a 4 kb enhancer region were selected and genotyped in a colorectal cancer cohort. MYLKP1 SNP influences on activity of MYLKP1 promoter (2kb) was assessed by dual luciferase reporter assay. RESULTS: Cancer cell lines, H441 and A549, exhibited increased MYLKP1 expression, increased MYLKP1 luciferase promoter activity, increased proliferation and migration. Genotyping studies identified two MYLKP1 SNPs (rs12490683; rs12497343) that significantly increase risk of colon cancer in African Americans compared to African American controls. Rs12490683 and rs12497343 further increase MYLKP1 promoter activity compared to the wild type MYLKP1 promoter. CONCLUSION: MYLKP1 is a cancer-promoting pseudogene whose genetic variants differentially enhance cancer risk in African American populations.


Asunto(s)
Proteínas de Unión al Calcio/genética , Neoplasias del Colon/genética , Quinasa de Cadena Ligera de Miosina/genética , Seudogenes , Negro o Afroamericano/genética , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Expresión Génica , Humanos , Quinasa de Cadena Ligera de Miosina/metabolismo , Oncogenes , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Factores de Riesgo , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA