Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 11(4)2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30999585

RESUMEN

Self-assembly of natural polymers constitute a powerful route for the development of functional materials. In particular, layer-by-layer (LBL) assembly constitutes a versatile technique for the nanostructuration of biobased polymers into multilayer films. Gelatin has gained much attention for its abundance, biodegradability, and excellent gel-forming properties. However, gelatin gels melt at low temperature, thus limiting its practical application. With respect to the above considerations, here, we explored the potential application of gelatin gels as a matrix for protein delivery at physiological temperature. A model protein, bovine serum albumin (BSA), was encapsulated within gelatin gels and then coated with a different number of bilayers of alginate and chitosan (10, 25, 50) in order to modify the diffusion barrier. The coated gel samples were analyzed by means of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) and confocal Raman spectroscopy, and it was found that the multilayer coatings onto polymer film were interpenetrated to some extent within the gelatin. The obtained results inferred that the coating of gelatin gels with polysaccharide multilayer film increased the thermal stability of gelatin gels and modulated the BSA release. Finally, the influence of a number of bilayers onto the drug release mechanism was determined. The Ritger-Peppas model was found to be the most accurate to describe the diffusion mechanism.

2.
J Mech Behav Biomed Mater ; 34: 47-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24556324

RESUMEN

The technological advances in material science are not enough to overcome the challenge of construct a material be able to replace the cartilage. The designed material has to meet the mechanical properties of cartilage and has to be also capable to be integrated with the articulation. Articular cartilage damage is a persistent and increasing problem which affects millions of people worldwide. Poly vinyl alcohol (PVA) hydrogels are promising implants, due to their similar properties as soft tissue; however their low mechanical resistance and durability together with its lack to integrate with the surrounding tissue restrict their application in this area. The poor adhesion can be solved by the development a composite hydrogel with bioactive and biocompatible filler, as hydroxyapatite (HA). The aim of this work was to obtain and characterize (physically, chemically and mechanically) PVA/HA composite hydrogels for potential application as articular replacement. Hence, composite hydrogels were prepared by adding of different amounts of HA in an aqueous solution of PVA and subsequent freezing-thawing cycles. It was observed that the addition of HA modified the physical and chemical features of the hydrogel and promoted the material crosslinking and stability. Moreover, it was found that the mechanical properties (compression, tension and nanoindentation) of the hydrogels were improved by the addition of HA. All these result indicate that these materials could be used as a potential cartilage replacement. However, further in vitro and in vivo studies are mandatory for future possible clinical applications and are actually being carried out.


Asunto(s)
Materiales Biocompatibles/química , Cartílago Articular , Criogeles/química , Durapatita/química , Fenómenos Mecánicos , Alcohol Polivinílico/química , Prótesis e Implantes , Congelación , Ensayo de Materiales
3.
Mater Sci Eng C Mater Biol Appl ; 34: 54-61, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24268233

RESUMEN

Polyvinyl alcohol (PVA)/cellulose nanowhisker (CNW) nanocomposite hydrogels to be used for wound dressing were obtained by freezing-thawing technique and characterized by means of morphological, physical, thermal, mechanical, barrier and antimicrobial properties. First, cellulose nanowhiskers were obtained by the acid hydrolysis of commercial crystalline microcellulose (MCC) and characterized by its size, shape, morphological, structural and thermal properties. Then, PVA/CNW nanocomposites with several CNW contents (0, 1, 3, 5 and 7wt.%) were obtained. Morphological, thermal, chemical and physical characterization of the PVA/CNW nanocomposite hydrogels was carried out. It was found that the addition of CNW to the hydrogel allows controlling the pore morphology of the samples. On the other hand, the transparency of the samples was maintained, the thermal stability was increased, the mechanical properties were improved and the water vapor transmission rate was in the range of wound dressing applications after CNW incorporation inside the PVA hydrogel matrix. The evaluation of microbial penetration showed that the prepared hydrogels can be considered as a good barrier against different microorganisms. All obtained results indicate that the PVA/CNW materials are promising to be used as wound dressing.


Asunto(s)
Vendajes , Celulosa/farmacología , Nanocompuestos/química , Alcohol Polivinílico/farmacología , Bacterias/metabolismo , Cristalización , Nanocompuestos/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Temperatura , Resistencia a la Tracción/efectos de los fármacos , Termogravimetría , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA