Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Algorithms Mol Biol ; 15: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32968428

RESUMEN

BACKGROUND: Data about herpesvirus microRNA motifs on human circular RNAs suggested the following statistical question. Consider independent random counts, not necessarily identically distributed. Conditioned on the sum, decide whether one of the counts is unusually large. Exact computation of the p-value leads to a specific algorithmic problem. Given n elements g 0 , g 1 , … , g n - 1 in a set G with the closure and associative properties and a commutative product without inverses, compute the jackknife (leave-one-out) products g ¯ j = g 0 g 1 ⋯ g j - 1 g j + 1 ⋯ g n - 1 ( 0 ≤ j < n ). RESULTS: This article gives a linear-time Jackknife Product algorithm. Its upward phase constructs a standard segment tree for computing segment products like g i , j = g i g i + 1 ⋯ g j - 1 ; its novel downward phase mirrors the upward phase while exploiting the symmetry of g j and its complement g ¯ j . The algorithm requires storage for 2 n elements of G and only about 3 n products. In contrast, the standard segment tree algorithms require about n products for construction and log 2 n products for calculating each g ¯ j , i.e., about n log 2 n products in total; and a naïve quadratic algorithm using n - 2 element-by-element products to compute each g ¯ j requires n n - 2 products. CONCLUSIONS: In the herpesvirus application, the Jackknife Product algorithm required 15 min; standard segment tree algorithms would have taken an estimated 3 h; and the quadratic algorithm, an estimated 1 month. The Jackknife Product algorithm has many possible uses in bioinformatics and statistics.

2.
BMC Bioinformatics ; 20(1): 77, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764761

RESUMEN

BACKGROUND: Genetic sequence database retrieval benchmarks play an essential role in evaluating the performance of sequence searching tools. To date, all phylogenetically diverse benchmarks known to the authors include only query sequences with single protein domains. Domains are the primary building blocks of protein structure and function. Independently, each domain can fulfill a single function, but most proteins (>80% in Metazoa) exist as multi-domain proteins. Multiple domain units combine in various arrangements or architectures to create different functions and are often under evolutionary pressures to yield new ones. Thus, it is crucial to create gold standards reflecting the multi-domain complexity of real proteins to more accurately evaluate sequence searching tools. DESCRIPTION: This work introduces MultiDomainBenchmark (MDB), a database suite of 412 curated multi-domain queries and 227,512 target sequences, representing at least 5108 species and 1123 phylogenetically divergent protein families, their relevancy annotation, and domain location. Here, we use the benchmark to evaluate the performance of two commonly used sequence searching tools, BLAST/PSI-BLAST and HMMER. Additionally, we introduce a novel classification technique for multi-domain proteins to evaluate how well an algorithm recovers a domain architecture. CONCLUSION: MDB is publicly available at http://csc.columbusstate.edu/carroll/MDB/ .


Asunto(s)
Algoritmos , Benchmarking , Bases de Datos de Proteínas , Proteínas/química , Secuencia de Aminoácidos , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia
3.
Proc Natl Acad Sci U S A ; 115(50): 12805-12810, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30455306

RESUMEN

Noncoding RNAs have substantial effects in host-virus interactions. Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs which can decoy other RNAs or RNA-binding proteins to inhibit their functions. The role of circRNAs is largely unknown in the context of Kaposi's sarcoma herpesvirus (KSHV). We hypothesized that circRNAs influence viral infection by inhibiting host and/or viral factors. Transcriptome analysis of KSHV-infected primary endothelial cells and a B cell line identified human circRNAs that are differentially regulated upon infection. We confirmed the expression changes with divergent PCR primers and RNase R treatment of specific circRNAs. Ectopic expression of hsa_circ_0001400, a circRNA induced by infection, suppressed expression of key viral latent gene LANA and lytic gene RTA in KSHV de novo infections. Since human herpesviruses express noncoding RNAs like microRNAs, we searched for viral circRNAs encoded in the KSHV genome. We performed circRNA-Seq analysis with RNase R-treated, circRNA-enriched RNA from KSHV-infected cells. We identified multiple circRNAs encoded by the KSHV genome that are expressed in KSHV-infected endothelial cells and primary effusion lymphoma (PEL) cells. The KSHV circRNAs are located within ORFs of viral lytic genes, are up-regulated upon the induction of the lytic cycle, and alter cell growth. Viral circRNAs were also detected in lymph nodes from patients of KSHV-driven diseases such as PEL, Kaposi's sarcoma, and multicentric Castleman's disease. We revealed new host-virus interactions of circRNAs: human antiviral circRNAs are activated in response to KSHV infection, and viral circRNA expression is induced in the lytic phase of infection.


Asunto(s)
Herpesvirus Humano 8/genética , ARN/genética , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virología , Linfocitos B/virología , Enfermedad de Castleman/genética , Enfermedad de Castleman/virología , Línea Celular , Células Endoteliales/virología , Perfilación de la Expresión Génica/métodos , Regulación Viral de la Expresión Génica/genética , Genes Virales/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfoma de Efusión Primaria/genética , Linfoma de Efusión Primaria/virología , MicroARNs/genética , Sistemas de Lectura Abierta/genética , ARN Circular , ARN Viral/genética
4.
Proc Natl Acad Sci U S A ; 114(46): E9893-E9902, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087304

RESUMEN

A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus-cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix-gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.


Asunto(s)
Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Virión/inmunología , Acoplamiento Viral , Antígenos CD4/metabolismo , Recuento de Linfocito CD4 , Línea Celular , Epítopos/química , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/química , Humanos , Virión/química , Virión/metabolismo
5.
Retrovirology ; 14(1): 13, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28231858

RESUMEN

Recently, Oberle et al. published a paper in Retrovirology evaluating the question of whether selection plays a role in HIV transmission. The Oberle study found no obvious genotypic or phenotypic differences between donors and recipients of epidemiologically linked pairs from the Swiss cohort. Thus, Oberle et al. characterized HIV-1 B transmission as largely "stochastic", an imprecise and potentially misleading term. Here, we re-analyzed their data and placed them in the context of transmission data for over 20 other human and animal trials. The present study finds that the transmitted/founder (T/F) viruses from the Swiss cohort show the same non-random genetic signatures conserved in 118 HIV-1, 40 SHIV, and 12 SIV T/F viruses previously published by two independent groups. We provide alternative interpretations of the Swiss cohort data and conclude that the sequences of their donor viruses lacked variability at the specific sites where other studies were able to demonstrate genotypic selection. Oberle et al. observed no phenotypic selection in vitro, so the problem of determining the in vivo phenotypic mechanisms that cause genotypic selection in HIV remains open.


Asunto(s)
Infecciones por VIH , VIH-1/genética , Animales , Genotipo , Humanos
6.
PLoS One ; 11(9): e0163688, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27685447

RESUMEN

Because of a high mutation rate, HIV exists as a viral swarm of many sequence variants evolving under various selective pressures from the human immune system. Although the Nef gene codes for the most immunogenic of HIV accessory proteins, which alone makes it of great interest to HIV research, it also encodes an RNA structure, whose contribution to HIV virulence has been largely unexplored. Nef RNA helps HIV escape RNA interference (RNAi) through nucleotide changes and alternative folding. This study examines Historic and Modern Datasets of patient HIV-1 Nef sequences during the evolution of the North American epidemic for local changes in RNA plasticity. By definition, RNA plasticity refers to an RNA molecule's ability to take alternative folds (i.e., alternative conformations). Our most important finding is that an evolutionarily conserved region of the HIV-1 Nef gene, which we denote by R2, recently underwent a statistically significant increase in its RNA plasticity. Thus, our results indicate that Modern Nef R2 typically accommodates an alternative fold more readily than Historic Nef R2. Moreover, the increase in RNA plasticity resides mostly in synonymous nucleotide changes, which cannot be a response to selective pressures on the Nef protein. R2 may therefore be of interest in the development of antiviral RNAi therapies.

7.
J Virol ; 89(7): 3619-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589663

RESUMEN

UNLABELLED: Human immunodeficiency virus (HIV) transmission typically results from infection by a single transmitted/founder (T/F) variant. Are T/F variants chosen uniformly at random from the donor pool, or are they selected based on advantageous traits facilitating transmission? Finding evidence for selection during transmission is of particular interest, because it would indicate that phenotypic and/or genetic properties of the viruses might be harnessed as potential vaccine targets or immunotherapies. Here, we systematically evaluated the differences between the Env proteins of simian immunodeficiency virus/simian HIV (SIV/SHIV) stock and T/F variants in search of "signature" sites of transmission. We also surveyed residue preferences in HIV at the SIV/SHIV signature sites. Four sites of gp120 showed significant selection, and an additional two sites showed a similar trend. Therefore, the six sites clearly differentiate T/F viruses from the majority of circulating variants in the stocks. The selection of SIV/SHIV could be inferred reasonably across both vaccinated and unvaccinated subjects, with infections resulting from vaginal, rectal, and intravenous routes of transmission and regardless of viral dosage. The evidence for selection in SIV and SHIV T/F variants is strong and plentiful, and in HIV the evidence is suggestive though commensurate with the availability of suitable data for analysis. Two of the signature residues are completely conserved across the SIV, SHIV, and HIV variants we examined. Five of the signature residues map to the C1 region of gp120 and one to the signal peptide. Our data raise the possibility that C1, while governing the association between gp120 and gp41, modulates transmission efficiency, replicative fitness, and/or host cell tropism at the level of virus-cell attachment and entry. IMPORTANCE: The present study finds significant evidence of selection on gp120 molecules of SIV/SHIV T/F viruses. The data provide ancillary evidence suggesting the same sites are under selection in HIV. Our findings suggest that the signature residues are involved in increasing the transmissibility of infecting viruses; therefore, they are potential targets for developing a vaccine or other protective measures. A recent study identified the same T/F signature motif but interpreted it as an effect of neutralization resistance. Here, we show that the T/F motif has broader functional significance beyond neutralization sensitivity, because it is present in nonimmune subjects. Also, a vaccine regimen popular in animal trials might have increased the transmission of variants with otherwise low transmission fitness. Our observations might explain why many animal vaccine trials have not faithfully predicted outcomes in human vaccine trials and suggest that current practices in vaccine design need to be reexamined accordingly.


Asunto(s)
Secuencia Conservada , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/transmisión , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Animales , Femenino , Genotipo , VIH/genética , VIH/fisiología , Infecciones por VIH/virología , Humanos , Macaca mulatta , Masculino , Selección Genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Tropismo Viral , Acoplamiento Viral , Replicación Viral
8.
BMC Res Notes ; 6: 209, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23706066

RESUMEN

BACKGROUND: In the coevolution of viruses and their hosts, viruses often capture host genes, gaining advantageous functions (e.g. immune system control). Identifying functional similarities shared by viruses and their hosts can help decipher mechanisms of pathogenesis and accelerate virus-targeted drug and vaccine development. Cellular homologs in viruses are usually documented using pairwise-sequence comparison methods. Yet, pairwise-sequence searches have limited sensitivity resulting in poor identification of divergent homologies. RESULTS: Methods based on profiles from multiple sequences provide a more sensitive alternative to identify similarities in host-pathogen systems. The present work describes a profile-based bioinformatics pipeline that we call the Domain Analysis of Symbionts and Hosts (DASH). DASH provides a web platform for the functional analysis of viral and host genomes. This study uses Human Herpesvirus 8 (HHV-8) as a model to validate the methodology. Our results indicate that HHV-8 shares at least 29% of its genes with humans (fourteen immunomodulatory and ten metabolic genes). DASH also suggests functions for fifty-one additional HHV-8 structural and metabolic proteins. We also perform two other comparative genomics studies of human viruses: (1) a broad survey of eleven viruses of disparate sizes and transcription strategies; and (2) a closer examination of forty-one viruses of the order Mononegavirales. In the survey, DASH detects human homologs in 4/5 DNA viruses. None of the non-retro-transcribing RNA viruses in the survey showed evidence of homology to humans. The order Mononegavirales are also non-retro-transcribing RNA viruses, however, and DASH found homology in 39/41 of them. Mononegaviruses display larger fractions of human similarities (up to 75%) than any of the other RNA or DNA viruses (up to 55% and 29% respectively). CONCLUSIONS: We conclude that gene sharing probably occurs between humans and both DNA and RNA viruses, in viral genomes of differing sizes, regardless of transcription strategies. Our method (DASH) simultaneously analyzes the genomes of two interacting species thereby mining functional information to identify shared as well as exclusive domains to each organism. Our results validate our approach, showing that DASH has potential as a pipeline for making therapeutic discoveries in other host-symbiont systems. DASH results are available at http://tinyurl.com/spouge-dash.


Asunto(s)
Virus ADN/aislamiento & purificación , Genoma Humano , Genoma Viral , Interacciones Huésped-Patógeno , Virus ARN/aislamiento & purificación , Simbiosis , Automatización , Virus ADN/genética , Humanos , Virus ARN/genética
9.
PLoS Comput Biol ; 8(12): e1002819, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300410

RESUMEN

Proteins do not function in isolation; it is their interactions with one another and also with other molecules (e.g. DNA, RNA) that mediate metabolic and signaling pathways, cellular processes, and organismal systems. Due to their central role in biological function, protein interactions also control the mechanisms leading to healthy and diseased states in organisms. Diseases are often caused by mutations affecting the binding interface or leading to biochemically dysfunctional allosteric changes in proteins. Therefore, protein interaction networks can elucidate the molecular basis of disease, which in turn can inform methods for prevention, diagnosis, and treatment. In this chapter, we will describe the computational approaches to predict and map networks of protein interactions and briefly review the experimental methods to detect protein interactions. We will describe the application of protein interaction networks as a translational approach to the study of human disease and evaluate the challenges faced by these approaches.


Asunto(s)
Enfermedad , Unión Proteica , Humanos , Mutación
10.
Bioinformatics ; 26(18): 2361-2, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20693322

RESUMEN

UNLABELLED: RefProtDom provides a set of divergent query domains, originally selected from Pfam, and full-length proteins containing their homologous domains, with diverse architectures, for evaluating pair-wise and iterative sequence similarity searches. Pfam homology and domain boundary annotations in the target library were supplemented using local and semi-global searches, PSI-BLAST searches, and SCOP and CATH classifications. AVAILABILITY: RefProtDom is available from http://faculty.virginia.edu/wrpearson/fasta/PUBS/gonzalez09a.


Asunto(s)
Bases de Datos de Proteínas , Estructura Terciaria de Proteína , Proteínas , Programas Informáticos
11.
Nucleic Acids Res ; 38(7): 2177-89, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20064877

RESUMEN

We have characterized a novel type of PSI-BLAST error, homologous over-extension (HOE), using embedded PFAM domain queries on searches against a reference library containing Pfam-annotated UniProt sequences and random synthetic sequences. PSI-BLAST makes two types of errors: alignments to non-homologous regions and HOE alignments that begin in a homologous region, but extend beyond the homology into neighboring sequence regions. When the neighboring sequence region contains a non-homologous domain, PSI-BLAST can incorporate the unrelated sequence into its position specific scoring matrix, which then finds non-homologous proteins with significant expectation values. HOE accounts for the largest fraction of the initial false positive (FP) errors, and the largest fraction of FPs at iteration 5. In searches against complete protein sequences, 5-9% of alignments at iteration 5 are non-homologous. HOE frequently begins in a partial protein domain; when partial domains are removed from the library, HOE errors decrease from 16 to 3% of weighted coverage (hard queries; 35-5% for sampled queries) and no-error searches increase from 2 to 58% weighed coverage (hard; 16-78% sampled). When HOE is reduced by not extending previously found sequences, PSI-BLAST specificity improves 4-8-fold, with little loss in sensitivity.


Asunto(s)
Alineación de Secuencia/métodos , Homología de Secuencia de Aminoácido , Filogenia , Posición Específica de Matrices de Puntuación , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/clasificación , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...