Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Elife ; 102021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259632

RESUMEN

Cohesin's association with and translocation along chromosomal DNAs depend on an ATP hydrolysis cycle driving the association and subsequent release of DNA. This involves DNA being 'clamped' by Scc2 and ATP-dependent engagement of cohesin's Smc1 and Smc3 head domains. Scc2's replacement by Pds5 abrogates cohesin's ATPase and has an important role in halting DNA loop extrusion. The ATPase domains of all SMC proteins are separated from their hinge dimerisation domains by 50-nm-long coiled coils, which have been observed to zip up along their entire length and fold around an elbow, thereby greatly shortening the distance between hinges and ATPase heads. Whether folding exists in vivo or has any physiological importance is not known. We present here a cryo-EM structure of the apo form of cohesin that reveals the structure of folded and zipped-up coils in unprecedented detail and shows that Scc2 can associate with Smc1's ATPase head even when it is fully disengaged from that of Smc3. Using cysteine-specific crosslinking, we show that cohesin's coiled coils are frequently folded in vivo, including when cohesin holds sister chromatids together. Moreover, we describe a mutation (SMC1D588Y) within Smc1's hinge that alters how Scc2 and Pds5 interact with Smc1's hinge and that enables Scc2 to support loading in the absence of its normal partner Scc4. The mutant phenotype of loading without Scc4 is only explicable if loading depends on an association between Scc2/4 and cohesin's hinge, which in turn requires coiled coil folding.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cromosomas/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , Dimerización , Regulación Fúngica de la Expresión Génica , Hidrólisis , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
2.
FEBS Lett ; 595(18): 2323-2340, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331769

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus, has triggered a worldwide health emergency. Here, we show that ferritin-like Dps from hyperthermophilic Sulfolobus islandicus, covalently coupled with SARS-CoV-2 antigens via the SpyCatcher system, forms stable multivalent dodecameric vaccine nanoparticles that remain intact even after lyophilisation. Immunisation experiments in mice demonstrated that the SARS-CoV-2 receptor binding domain (RBD) coupled to Dps (RBD-S-Dps) elicited a higher antibody titre and an enhanced neutralising antibody response compared to monomeric RBD. A single immunisation with RBD-S-Dps completely protected hACE2-expressing mice from serious illness and led to viral clearance from the lungs upon SARS-CoV-2 infection. Our data highlight that multimerised SARS-CoV-2 subunit vaccines are a highly efficacious modality, particularly when combined with an ultra-stable scaffold.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Receptores Virales/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas Bacterianas/química , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Proteínas de Unión al ADN/química , Ferritinas/química , Humanos , Inmunización , Ratones , Nanopartículas , Dominios Proteicos , Multimerización de Proteína , Glicoproteína de la Espiga del Coronavirus/química , Sulfolobus
3.
Elife ; 92020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32930661

RESUMEN

In addition to extruding DNA loops, cohesin entraps within its SMC-kleisin ring (S-K) individual DNAs during G1 and sister DNAs during S-phase. All three activities require related hook-shaped proteins called Scc2 and Scc3. Using thiol-specific crosslinking we provide rigorous proof of entrapment activity in vitro. Scc2 alone promotes entrapment of DNAs in the E-S and E-K compartments, between ATP-bound engaged heads and the SMC hinge and associated kleisin, respectively. This does not require ATP hydrolysis nor is it accompanied by entrapment within S-K rings, which is a slower process requiring Scc3. Cryo-EM reveals that DNAs transported into E-S/E-K compartments are 'clamped' in a sub-compartment created by Scc2's association with engaged heads whose coiled coils are folded around their elbow. We suggest that clamping may be a recurrent feature of cohesin complexes active in loop extrusion and that this conformation precedes the S-K entrapment required for sister chromatid cohesion.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/química , ADN de Hongos/genética , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Cohesinas
4.
Nat Microbiol ; 4(12): 2357-2368, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31501539

RESUMEN

Bactofilins are small ß-helical proteins that form cytoskeletal filaments in a range of bacteria. Bactofilins have diverse functions, from cell stalk formation in Caulobacter crescentus to chromosome segregation and motility in Myxococcus xanthus. However, the precise molecular architecture of bactofilin filaments has remained unclear. Here, sequence analysis and electron microscopy results reveal that, in addition to being widely distributed across bacteria and archaea, bactofilins are also present in a few eukaryotic lineages such as the Oomycetes. Electron cryomicroscopy analysis demonstrated that the sole bactofilin from Thermus thermophilus (TtBac) forms constitutive filaments that polymerize through end-to-end association of the ß-helical domains. Using a nanobody, we determined the near-atomic filament structure, showing that the filaments are non-polar. A polymerization-impairing mutation enabled crystallization and structure determination, while reaffirming the lack of polarity and the strength of the ß-stacking interface. To confirm the generality of the lack of polarity, we performed coevolutionary analysis on a large set of sequences. Finally, we determined that the widely conserved N-terminal disordered tail of TtBac is responsible for direct binding to lipid membranes, both on liposomes and in Escherichia coli cells. Membrane binding is probably a common feature of these widespread but only recently discovered filaments of the prokaryotic cytoskeleton.


Asunto(s)
Archaea/citología , Bacterias/citología , Citoesqueleto/química , Citoesqueleto/ultraestructura , Secuencia de Aminoácidos , Archaea/química , Bacterias/química , Proteínas Bacterianas/química , Caulobacter crescentus/química , Caulobacter crescentus/citología , Segregación Cromosómica , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Escherichia coli , Liposomas , Membranas , Modelos Moleculares , Myxococcus xanthus , Análisis de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA