Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Foods ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672891

RESUMEN

Avocado paste (AP) is an industrial byproduct and a potential source of bioactive compounds, so there is great interest in its valorization. The objective of the present study was to evaluate the effects of adding AP to corn chips regarding their nutritional profile and sensory acceptability. Three AP-supplemented corn chip samples were prepared (C-2%, C-6%, and C-10%), along with a control chip (C), whose total phenolics, flavonoids, antioxidant capacity, proximate composition, minerals, fatty acids, and sensory acceptability were evaluated. Regarding the content of phenolic compounds and flavonoids, significant increases were found between all samples (p < 0.05), particularly between C and C-10% (from 0.93 to 3.56 mg GAE/g dw and 1.17 to 6.61 mg QE/g dw, respectively). Their antioxidant capacity also increased significantly (p < 0.05) with all methods used (FRAP, DPPH, ORAC, and TEAC). Regarding the sensory analysis, no significant differences were found (p > 0.05) between C and C-2% in the parameters of smell, color, flavor, and overall acceptability; however, the texture of C-2% was better evaluated. The C-2% sample also had the highest acceptability; 82% of the participants mentioned that they would buy the C-2%, higher than the rest of the samples. These results suggest the feasibility of adding 2% AP as a strategy to improve the nutritional properties of corn chips without compromising their sensory acceptability; therefore, AP may be used as a food ingredient.

2.
Cell Biochem Biophys ; 82(1): 119-126, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831306

RESUMEN

Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.


Asunto(s)
Dieta Alta en Grasa , Persea , Ratas , Masculino , Animales , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Persea/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Pathogens ; 12(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37887761

RESUMEN

This study compared the effect of oregano essential oil versus sodium hypochlorite, hydrogen peroxide, and benzalkonium chloride against the viability of adhered Salmonella Typhimurium and Escherichia coli O157:H7 on 304 stainless steel. Oregano essential oil was effective in disrupting the biofilms of both bacteria at concentrations ranging from 0.15 to 0.52 mg mL-1. In addition, damage to stainless-steel surfaces following disinfection treatments was assessed by weight loss analysis and via visual inspection using light microscopy. Compared to the other treatments, oregano oil caused the least damage to stainless steel (~0.001% weight loss), whereas sodium hypochlorite caused the most severe damage (0.00817% weight loss) when applied at 0.5 mg mL-1. Moreover, oregano oil also had an apparent protective impact on the stainless steel as weight losses were less than for the control surfaces (distilled water only). On the other hand, sodium hypochlorite caused the most severe damage to stainless steel (0.00817% weight loss). In conclusion, oregano oil eliminated monoculture biofilms of two important foodborne pathogens on 304 stainless-steel surfaces, while at the same time minimizing damage to the surfaces compared with conventional disinfectant treatments.

4.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771113

RESUMEN

Obesity is a serious health problem worldwide, since it is associated with multiple metabolic disorders and complications such as cardiovascular disease, type 2 diabetes, fatty liver disease and overall metabolic dysfunction. Dysregulation of the hunger-satiety pathway, which includes alterations of central and peripheral signaling, explains some forms of obesity by favoring hyperphagia and weight gain. The present work comprehensively summarizes the mechanisms by which naringenin (NAR), a predominant flavanone in citrus fruits, could modulate the main pathways associated with the development of obesity and some of its comorbidities, such as oxidative stress (OS), inflammation, insulin resistance (IR) and dyslipidemia, as well as the role of NAR in modulating the secretion of enterohormones of the satiety pathway and its possible antiobesogenic effect. The results of multiple in vitro and in vivo studies have shown that NAR has various potentially modulatory biological effects against obesity by countering IR, inflammation, OS, macrophage infiltration, dyslipidemia, hepatic steatosis, and adipose deposition. Likewise, NAR is capable of modulating peptides or peripheral hormones directly associated with the hunger-satiety pathway, such as ghrelin, cholecystokinin, insulin, adiponectin and leptin. The evidence supports the use of NAR as a promising alternative to prevent overweight and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Flavanonas , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/metabolismo , Flavanonas/farmacología , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Enfermedad del Hígado Graso no Alcohólico/complicaciones
5.
J Pharmacol Toxicol Methods ; 120: 107252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36716799

RESUMEN

Insulin resistance (IR) is the main feature of prediabetes (PD), which ultimately leads to diabetes. High-dose streptozotocin-treated rodents often show irreversible ß-cell mass loss and function, leaving the premorbid diabetic state (PD/IR) unnoticed. This study aimed to re-evaluate the synergistic/independent effect of a sub-chronic consumption (1-5 weeks) of a high-fat diet (60% gross energy from fat, 3.8 kcal.g-1) with [PD/IR-2 (week 2) to PD/IR-5 week five)] or without [HFD-5 (week five)] a single intraperitoneal dose (35 mg.kg-1) of streptozotocin in Wistar rats. Bioassay performance and clinical/histological features suggesting PD/IR or diabetes, were documented weekly and compared to standard chow-fed (3.5 kcal.g-1) rats (healthy controls, HC). PD/IR1-5 (fed with HFD for 1 to 5 weeks plus a single dose of streptozotocin) and HFD-5 (just fed with HFD for 5 weeks) groups reduced their food intake yet gained more body weight than HC. Groups exhibited hyperglycemia, dyslipidemia, and impaired glucose tolerance in decreasing order as follows: PD/IR-5, PD/IR-4, HFD-5, PD/IR-2-3, and HC. Histological disturbances in the pancreas, Soleus muscle, and liver were mostly observed in HFD-5 and PD/IR4-5 groups. HFD administration for 4 weeks white a single moderate dose of streptozotocin four days before sacrifice, leads to a convenient PD/IR rat model.


Asunto(s)
Resistencia a la Insulina , Estado Prediabético , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Estado Prediabético/inducido químicamente , Estreptozocina , Glucemia , Ratas Wistar , Insulina
6.
Foods ; 13(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38201170

RESUMEN

Guava and mamey are phenolic- and carotenoid-rich fruits with potential health benefits, but are minimally used as ingredients in functional beverages. The objectives of the present work are to optimize the content of guava and mamey pulps and a stevia solution in the formulation of a functional beverage with high content of bioactive compounds and sensory acceptability using a mixture design analysis, and to analyze its composition after in vitro digestion. The optimized formulation (17.77 and 19.23 g of guava and mamey pulps, respectively; 1% stevia solution) yielded a beverage with 418.21 mg gallic acid equivalents (GAE)/100 mL and 0.20 mg ß-carotene/100 mL, and an antioxidant capacity of 213.58, 78.90 and 234.03 mg Trolox equivalents (TE)/100 mL using three methodologies. The mathematical model developed was significant (p < 0.05), according to R2 values between 0.70 and 0.75. α- and ß-carotene were quantified during the oral phase of in vitro digestion. Gallic, p-coumaric, ferulic and chlorogenic acids were also identified. The beverage had a general acceptability of 6.72. We conclude that the mathematical model developed was a good predictor of the experimental data and that the optimized beverage contained high bioactive concentrations (phenolics and carotenoids) and was well-accepted by potential consumers.

7.
Antibiotics (Basel) ; 11(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36551446

RESUMEN

Pathogenic strains of Escherichia coli threaten public health due to their virulence factors and antibiotic resistance. Additionally, the virulence of this bacterium varies by region depending on environmental conditions, agricultural practices, and the use of antibiotics and disinfectants. However, there is limited research on the prevalence of antibiotic-resistant E. coli in agriculture. Therefore, this research aimed to determine the antibiotic resistance of E. coli isolated from the Honeydew melon production system in Hermosillo, Sonora, Mexico. Thirty-two E. coli strains were isolated from 445 samples obtained from irrigation water, harvested melons, the hands of packaging workers, boxes, and discarded melons. The resistance profile of the E. coli strains was carried out to 12 antibiotics used in antimicrobial therapeutics against this bacterium; a high level of resistance to ertapenem (100%) was detected, followed by meropenem (97%), and ampicillin (94%); 47% of the strains were classified as multidrug-resistant. It was possible to identify the prevalence of the extended-spectrum ß-lactamase (ESBLs) gene blaTEM (15.6%), as well as the non-ESBL genes qepA (3.1%) and aac(6')lb-cr (3.1%). The E. coli strains isolated from irrigation water were significantly associated with resistance to aztreonam, cefuroxime, amikacin, and sulfamethoxazole/trimethoprim. Irrigation water, packing workers' hands, and discarded melons showed a higher prevalence of antibiotic-resistant, ESBL, and non-ESBL genes of E. coli strains in a farm and packing facility of Honeydew melon in Hermosillo, Sonora.

8.
Bioengineering (Basel) ; 9(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36354534

RESUMEN

Food waste is a serious problem with negative environmental and economic consequences. Unused food (either as waste or by-products and referred to as food residues in the present work) is a source of carbohydrates, lipids, proteins, vitamins, minerals and bioactive compounds that could be used in an alternate or secondary life cycle to avoid discarding it. The present work reviews the potential use of food residues for the bioengineering of single-cell protein (SCP), addressing aspects of production, nutrition and safety, as well as the main challenges and perspectives. SCP is obtained from various microorganisms, including fungi, bacteria, yeasts and algae, in pure or mixed form. SCP generally contains a higher percentage of protein (30-80%) compared to soy (38.6%), fish (17.8%), meat (21.2%) and whole milk (3.28%). SCP is a source of essential amino acids, including methionine, threonine and lysine. The use of food residues as substrates for the production of SCP would reduce production costs (35-75%); however, optimization and industrial scaling are some of the main challenges to its sustainable production. The use food waste and agro by-products from the food industry could be a promising alternative to obtain protein according to a circular production scheme.

9.
Nutrients ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36079920

RESUMEN

Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg ß-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.


Asunto(s)
Antioxidantes , Passiflora , Antocianinas/análisis , Antocianinas/farmacología , Antiinflamatorios/análisis , Antiinflamatorios/farmacología , Antioxidantes/análisis , Carotenoides/análisis , Carotenoides/farmacología , Fibras de la Dieta/análisis , Frutas/química , Passiflora/química , Fitoquímicos/análisis , Fitoquímicos/farmacología
10.
Foods ; 11(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36076774

RESUMEN

Aqueous and ethanolic pomegranate peel extracts (PPE) were studied as a source of phenolic compounds with antimicrobial, anti-quorum sensing, and antioxidant properties. The aqueous extract showed higher total phenolic and flavonoid content (153.43 mg GAE/g and 45.74, respectively) and antioxidant capacity (DPPH radical inhibition: 86.12%, ABTS radical scavenging capacity: 958.21 mg TE/dw) compared to the ethanolic extract. The main phenolic compounds identified by UPLC-DAD were chlorogenic and gallic acids. The aqueous PPE extract showed antimicrobial activity against Listeria monocytogenes, Salmonella Typhimurium, Candida tropicalis (MICs 19-30 mg/mL), and anti-quorum sensing activity expressed as inhibition of Chromobacterium violaceum violacein production (%). The aqueous PPE extracts at 25 mg/mL applied on alfalfa sprouts reduced psychrophilic bacteria (1.12 Log CFU/100 g) and total coliforms (1.23 Log CFU/100 g) and increased the antioxidant capacity of the treated sprouts (55.13 µmol TE/100 g (DPPH) and 126.56 µmol TE/100 g (ABTS)) compared to untreated alfalfa. This study emphasizes PPE's antioxidant and antimicrobial activities in alfalfa sprouts preservation.

12.
J Food Biochem ; 46(12): e14260, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35633197

RESUMEN

Inflammation may negatively impact health, particularly that of the central nervous system. Phenolic compounds are bioactive molecules present in fruits and vegetables with potential anti-inflammatory effects. The purpose of the present work is to review the immunomodulatory bioactivities of phenolic compounds in the periphery and in the central nervous system. Results show that various types of phenolics are able to counter diet- or pathogen-induced systemic inflammation (among others) in various models. In vitro data show significant effects of flavonoids and phenolic acids in particular; similar bioactivities were reported in vivo, when administering them as pure compounds or from fruit and vegetable extracts that contain them. In the central nervous system, phenolics counter chronic inflammation and aggressive acute inflammatory processes, such as ischemic events, when administered preemptively and even therapeutically. We therefore conclude that the immunomodulatory potential of phenolic compounds can maintain an adequate immune response; their regular consumption should therefore be prioritized in order to maintain health. PRACTICAL APPLICATIONS: The immune response must be carefully regulated in order to avoid its deleterious effects. The present work highlights how phenolic compounds, dietary components ubiquitous in everyday diet, are able to maintain it within an adequate range. As humans are exposed to more proinflammatory stimuli (inadequate dietary pattern, mental stress, environmental pollution, chronic diseases, etc.), it becomes necessary to counter them, and consuming adequate amounts of foods that contain compounds with this ability is a rather simple strategy. Thus, the present work highlights how fruits and vegetables can help to maintain an adequate immune response that can preserve systemic health and that of the central nervous system. Furthermore, specific compounds contained in them can also be ideal candidates for additional in-depth studies, which can potentially lead to the development of potent, targeted, and safe anti-inflammatory molecules.


Asunto(s)
Fármacos Neuroprotectores , Humanos , Fármacos Neuroprotectores/farmacología , Dieta , Fenoles/farmacología , Frutas , Verduras , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
13.
Int J Food Microbiol ; 374: 109736, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35613497

RESUMEN

Escherichia coli is among the most prevalent food contaminant microorganisms that have evolved, generating variants based on their effects on the host; these include commensals or pathobiont strains. The last classifications of E. coli intestinal pathobionts found in this review are enteroinvasive, enterohemorrhagic, enteropathogenic, enterotoxigenic, diffusely adherent, and enteroaggregative strains. Meanwhile, the most ancestral are enteropathogenic and enteroaggregative, and the most contemporaries are the enterotoxigenic and enteroinvasive strains. These pathobionts have been proposed based on their infective mechanisms, including toxin production, adherence effects, and tissue damage. It is also evidenced that environmental stresses, including bacterial exposition to antibiotics and disinfectants, contribute to this evolution. Therefore, new antibacterial and antivirulence agents are being explored, mainly from natural sources. In this context, this review discusses the diversity of E. coli pathobionts, their participation in foodborne outbreaks, and strategies to survey and control their spread and virulence.


Asunto(s)
Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos , Diarrea/microbiología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Inocuidad de los Alimentos , Humanos , Virulencia
14.
Life (Basel) ; 12(4)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35455025

RESUMEN

The hypoglycemic effect of functional phytochemicals has been evaluated in diabetic rodents but scarcely in its premorbid condition (prediabetes; PD). This study aimed to evaluate a mango (cv. Ataulfo) peel hydroethanolic (20:80) extract (MPE) for in vivo glycemic/lipidemic-normalizing effect and in vitro enzyme inhibitory (α-amylase/α-glucosidase) activity. The polyphenolic MPE (138 mg EAG.g−1, mainly gallic acid and mangiferin) with antioxidant capacity (DPPH• 34 mgTE.g−1) was fed to PD rats (induction: high-fat diet (60% energy) + single dose streptozotocin (35 mg·kg−1), 4 weeks). At the 8th week, fasting glycemia (FG), oral glucose tolerance test, and insulin sensitivity indexes (HOMA-IR, HOMA-ß) > blood lipid-normalizing effect were documented as healthy controls > MPE > disease (PD) controls, which was possibly related to the extract's concentration−response in vitro enzyme inhibitory activity (IC50 ≈ 0.085 mg·mL−1). MPE is a rich source of glucose-lowering phytochemicals for the primary prevention of type 2 diabetes.

15.
Braz J Microbiol ; 53(3): 1187-1197, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35380361

RESUMEN

Phellinus Quél is one of the largest genera of Hymenochaetaceae; it comprises about 220 species widely distributed on Earth. Most Phellinus species are lignicolous mushrooms that accumulate bioactive compounds. This research studied the phenolic composition of Phellinus spp. and their relationship with antibacterial and antiviral capacity. Phenolics were extracted from Phellinus badius, P. fastuosus, and P. grenadensis; their antiviral and antibacterial activities were evaluated against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Escherichia coli O157: H7; and the bacteriophages MS2 and Φ- × 174. Gallic acid, chlorogenic acid, caffeic acid, epicatechin, ferulic acid, catechin, 1,3-dicaffeoylquinic acid, p-coumaric acid, and rutin were found in different proportions among Phellinus spp. Total phenolic content ranged from 96 to 209 mg GAE/g, and total flavonoids from 10 to 27 QE/g. The minimum inhibitory concentrations of P. badius, P. grenadensis, and P. fastuosus against E. coli O157: H7 were 13, 20, and 27 mg/mL, against S. enterica were 20, 30, and 15 mg/mL, and against L. monocytogenes were 10, 15, and 25 mg/mL, respectively. The phenolic content was better correlated with the antibacterial effect against E. coli O157: H7 and L. monocytogenes (r = 0.8-0.9), but not against S. enterica (r = 0.05). The antiviral activity of the extracts (0.9 mg/mL) was 29 to 41% against MS2 and 27 to 38% for Φ-X174 virus (r = 0.8-0.9). In silico analysis showed binding energy values of - 7.9 and - 4.8 kcal/mol between the identified phenolic compounds and the M and G proteins of each virus. The antibacterial and antiviral properties of Phellinus species were correlated with the phenolic content.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Antibacterianos/farmacología , Antivirales/análisis , Antivirales/farmacología , Microbiología de Alimentos , Phellinus , Fenoles/análisis , Fenoles/farmacología
16.
Foods ; 11(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35407143

RESUMEN

Sweet potato (SP; Ipomoea batatas (L.) Lam) is an edible tuber native to America and the sixth most important food crop worldwide. China leads its production in a global market of USD 45 trillion. SP domesticated varieties differ in specific phenotypic/genotypic traits, yet all of them are rich in sugars, slow digestible/resistant starch, vitamins, minerals, bioactive proteins and lipids, carotenoids, polyphenols, ascorbic acid, alkaloids, coumarins, and saponins, in a genotype-dependent manner. Individually or synergistically, SP's phytochemicals help to prevent many illnesses, including certain types of cancers and cardiovascular disorders. These and other topics, including the production and market diversification of raw SP and its products, and SP's starch as a functional ingredient, are briefly discussed in this review.

17.
Antioxidants (Basel) ; 11(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35204267

RESUMEN

Melatonin (MT) treatment (100 µM, 2 h) was applied to four mango fruit cultivars ('Langra', 'Chaunsa', 'Dashehari', and 'Gulab Jamun'), before being stored at 5 ± 1 °C for 28 d, in order to alleviate chilling injury (CI). Maximum CI reduction was observed in 'Langra' mangoes, and minimum in 'Gulab Jamun' mangoes. This positive effect on quality preservation was associated with an increased concentration of endogenous MT, which prevented the accumulation of reactive oxygen species (H2O2 and O2·-) and stimulated non-enzymatic antioxidants (total phenolic compounds and total flavonoids), possibly due to higher activity of phenylalanine ammonia lyase and tyrosine ammonia lyase. Increased antioxidant activity was also documented in MT-treated 'Langra' mangoes, according to four different assays (DPPH, TEAC, FRAP, and CUPRAC) and higher activity of six antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase). In contrast, 'Gulab Jamun' mangoes showed minimal or no positive effects on the aforementioned variables in response to the exogenous MT application. 'Chaunsa' and 'Dashehari' mangoes had some intermediate effects on their antioxidant system (enzymatic and non-enzymatic) and alleviation of CI, when treated with exogenous MT. We conclude that exogenous MT exerts a cultivar-dependent stimulating effect on the antioxidant system of mangoes, which results in an increase in the fruits' resistance to low temperature.

18.
Foods ; 11(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37430928

RESUMEN

One of the biggest problems faced by food industries is the generation of large amounts of agro-industrial byproducts, such as those derived from fruit processing, as well as the negative effects of their inadequate management. Approximately 1/3 of the food produced worldwide is unused or is otherwise wasted along the chain, which represents a burden on the environment and an inefficiency of the system. Thus, there is growing interest in reintroducing agro-industrial byproducts (both from fruits and other sources) into the processing chain, either by adding them as such or utilizing them as sources of health-promoting bioactive compounds. The present work discusses recent scientific studies on the nutritional and bioactive composition of some agro-industrial byproducts derived from fruit processing, their applications as ingredients to supplement baked foods, and their main biological activities on the consumer's health. Research shows that agro-industrial fruit byproducts can be incorporated into various baked foods, increasing their fiber content, bioactive profile, and antioxidant capacity, in addition to other positive effects such as reducing their glycemic impact and inducing satiety, all while maintaining good sensory acceptance. Using agro-industrial fruit byproducts as food ingredients avoids discarding them; it can promote some bioactivities and maintain or even improve sensory acceptance. This contributes to incorporating edible material back into the processing chain as part of a circular bioeconomy, which can significantly benefit primary producers, processing industries (particularly smaller ones), and the final consumer.

19.
Pathogens ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36678383

RESUMEN

Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.

20.
Beilstein J Nanotechnol ; 12: 1047-1062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621615

RESUMEN

Curcumin (CUR) is a phenolic compound that is safe for human consumption. It exhibits chemopreventive, antiproliferative, antiangiogenic, and antimetastatic effects. However, these benefits can be hampered due to the lipophilic nature, rapid metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems that respond to external stimuli (i.e., magnetic nanoparticles and photodynamic therapy). Previous studies showed that the effects of CUR were improved when loaded into nanosystems as compared to the free compound, as well as synergist effects when it is co-administrated alongside with other molecules. In order to maximize the beneficial health effects of CUR, critical factors need to be strictly controlled, such as particle size, morphology, and interaction between the encapsulating material and CUR. In addition, there is an area of study to be explored in the development of CUR-based smart materials for nanomedical applications. Imaging-guided drug delivery of CUR-based nanosystems may also directly target specific cells, thereby increasing the therapeutic and chemopreventive efficacy of this versatile compound.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...